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Chapter 1

Finite Element Basis Functions

1.1 Representing a One-Dimensional Field

Consider the problem of finding a mathematical expression u (x) to represent a one-dimensional

field e.g., measurements of temperature u against distance x along a bar, as shown in Figure 1.1a.
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FIGURE 1.1: (a) Temperature distribution u (x) along a bar. The points are the measured

temperatures. (b) A least-squares polynomial fit to the data, showing the unacceptable oscillation

between data points.

One approach would be to use a polynomial expression u (x) = a+ bx+ cx2+dx3+ . . . and to

estimate the values of the parameters a, b, c and d from a least-squares fit to the data. As the degree

of the polynomial is increased the data points are fitted with increasing accuracy and polynomials

provide a very convenient form of expression because they can be differentiated and integrated

readily. For low degree polynomials this is a satisfactory approach, but if the polynomial order is

increased further to improve the accuracy of fit a problem arises: the polynomial can be made to fit

the data accurately, but it oscillates unacceptably between the data points, as shown in Figure 1.1b.

To circumvent this, while retaining the advantages of low degree polynomials, we divide the

bar into three subregions and use low order polynomials over each subregion - called elements. For

later generality we also introduce a parameter s which is a measure of distance along the bar. u is

plotted as a function of this arclength in Figure 1.2a. Figure 1.2b shows three linear polynomials

in s fitted by least-squares separately to the data in each element.
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FIGURE 1.2: (a) Temperature measurements replotted against arclength parameter s. (b) The s

domain is divided into three subdomains, elements, and linear polynomials are independently fitted

to the data in each subdomain.

1.2 Linear Basis Functions

A new problem has now arisen in Figure 1.2b: the piecewise linear polynomials are not continuous

in u across the boundaries between elements. One solution would be to constrain the parameters a,

b, c etc. to ensure continuity of u across the element boundaries, but a better solution is to replace

the parameters a and b in the first element with parameters u1 and u2, which are the values of u at

the two ends of that element. We then define a linear variation between these two values by

u (ξ) = (1− ξ)u1 + ξu2

where ξ(0 ≤ ξ ≤ 1) is a normalized measure of distance along the curve.

We define

ϕ1 (ξ) = 1− ξ

ϕ2 (ξ) = ξ

such that

u (ξ) = ϕ1 (ξ)u1 + ϕ2 (ξ)u2

and refer to these expressions as the basis functions associated with the nodal parameters u1 and

u2. The basis functions ϕ1 (ξ) and ϕ2 (ξ) are straight lines varying between 0 and 1 as shown in

Figure 1.3.

It is convenient always to associate the nodal quantity un with element node n and to map the

temperature U∆ defined at global node ∆ onto local node n of element e by using a connectivity

matrix ∆(n, e) i.e.,

un = U∆(n,e)

where ∆(n, e) = global node number of local node n of element e. This has the advantage that the

interpolation

u (ξ) = ϕ1 (ξ)u1 + ϕ2 (ξ)u2

holds for any element provided that u1 and u2 are correctly identified with their global counterparts,
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11 1

ξ
10 0 1

ξ

ϕ1 (ξ) ϕ2 (ξ)

FIGURE 1.3: Linear basis functions ϕ1 (ξ) = 1− ξ and ϕ2 (ξ) = ξ.

as shown in Figure 1.4. Thus, in the first element

nodes:

global nodes:

element

U3 U4U2U1

element 1 element 2 element 3

node 1 node 2 node 3 node 4

x

u1 u2

ξ

u1 u2

ξ

u1 u2

ξ
0 10 1 0 1

FIGURE 1.4: The relationship between global nodes and element nodes.

u (ξ) = ϕ1 (ξ)u1 + ϕ2 (ξ)u2 (1.1)

with u1 = U1 and u2 = U2.

In the second element u is interpolated by

u (ξ) = ϕ1 (ξ)u1 + ϕ2 (ξ)u2 (1.2)

with u1 = U2 and u2 = U3, since the parameter U2 is shared between the first and second elements

the temperature field u is implicitly continuous. Similarly, in the third element u is interpolated by

u (ξ) = ϕ1 (ξ)u1 + ϕ2 (ξ)u2 (1.3)

with u1 = U3 and u2 = U4, with the parameter U3 being shared between the second and third

elements. Figure 1.6 shows the temperature field defined by the three interpolations (1.1)–(1.3).



4 FINITE ELEMENT BASIS FUNCTIONS

element 2 element 3element 1

+
+

+

+
+

+
+ + +

+

+
+

++

+

+

node 3

node 4

node 1

node 2

u

s

FIGURE 1.5: Temperature measurements fitted with nodal parameters and linear basis functions.

The fitted temperature field is now continuous across element boundaries.

1.3 Basis Functions as Weighting Functions

It is useful to think of the basis functions as weighting functions on the nodal parameters. Thus, in

element 1

at ξ = 0 u (0) = (1− 0)u1 + 0u2 = u1

which is the value of u at the left hand end of the element and has no dependence on u2

at ξ =
1

4
u

(
1

4

)

=

(

1− 1

4

)

u1 +
1

4
u2 =

3

4
u1 +

1

4
u2

which depends on u1 and u2, but is weighted more towards u1 than u2

at ξ =
1

2
u

(
1

2

)

=

(

1− 1

2

)

u1 +
1

2
u2 =

1

2
u1 +

1

2
u2

which depends equally on u1 and u2

at ξ =
3

4
u

(
3

4

)

=

(

1− 3

4

)

u1 +
3

4
u2 =

1

4
u1 +

3

4
u2

which depends on u1 and u2 but is weighted more towards u2 than u1

at ξ = 1 u (1) = (1− 1)u1 + 1u2 = u2

which is the value of u at the right hand end of the region and has no dependence on u1.

Moreover, these weighting functions can be considered as global functions, as shown in Fig-

ure 1.6, where the weighting function wn associated with global node n is constructed from the

basis functions in the elements adjacent to that node.

For example, w2 weights the global parameter U2 and the influence of U2 falls off linearly in

the elements on either side of node 2.

We now have a continuous piecewise parametric description of the temperature field u (ξ) but
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(a)

(b)

(c)

(d)

w1

w2

w4

w3

s

s

s

s

FIGURE 1.6: (a) . . . (d) The weighting functions wn associated with the global nodes n = 1 . . . 4,

respectively. Notice the linear fall off in the elements adjacent to a node. Outside the immediately

adjacent elements, the weighting functions are defined to be zero.
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in order to define u (x) we need to define the relationship between x and ξ for each element. A

convenient way to do this is to define x as an interpolation of the nodal values of x.

For example, in element 1

x (ξ) = ϕ1 (ξ)x1 + ϕ2 (ξ)x2 (1.4)

and similarly for the other two elements. The dependence of temperature on x, u (x), is therefore

defined by the parametric expressions

u (ξ) =
∑

n

ϕn (ξ)un

x(ξ) =
∑

n

ϕn (ξ)xn

where summation is taken over all element nodes (in this case only 2) and the parameter ξ (the

“element coordinate”) links temperature u to physical position x. x (ξ) provides the mapping

between the mathematical space 0 ≤ ξ ≤ 1 and the physical space x1 ≤ x ≤ x2, as illustrated in

Figure 1.7.

1.4 Quadratic Basis Functions

The essential property of the basis functions defined above is that the basis function associated

with a particular node takes the value of 1 when evaluated at that node and is zero at every other

node in the element (only one other in the case of linear basis functions). This ensures the linear

independence of the basis functions. It is also the key to establishing the form of the basis functions

for higher order interpolation. For example, a quadratic variation of u over an element requires

three nodal parameters u1, u2 and u3

u (ξ) = ϕ1 (ξ)u1 + ϕ2 (ξ)u2 + ϕ3 (ξ)u3 (1.5)

The quadratic basis functions are shown, with their mathematical expressions, in Figure 1.8. Notice

that since ϕ1 (ξ) must be zero at ξ = 0.5 (node 2), ϕ1 (ξ) must have a factor (ξ − 0.5) and since it

is also zero at ξ = 1 (node 3), another factor is (ξ − 1). Finally, since ϕ1 (ξ) is 1 at ξ = 0 (node 1)

we have ϕ1 (ξ) = 2 (ξ − 1) (ξ − 0.5). Similarly for the other two basis functions.

1.5 Two- and Three-Dimensional Elements

Two-dimensional bilinear basis functions are constructed from the products of the above one-

dimensional linear functions as follows

Let

u (ξ1, ξ2) = ϕ1 (ξ1, ξ2)u1 + ϕ2 (ξ1, ξ2)u2 + ϕ3 (ξ1, ξ2) u3 + ϕ4 (ξ1, ξ2) u4
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ξ = 0.2

ξ = 0.2

ξ

ξ

ξ

u2

u1

u (x) at ξ = 0.2

0

0

x2

x1

u1

u2

0 x1

1

1

x2

x

u

x

u

ξ = 0

ξ = 1

FIGURE 1.7: Illustrating how x and u are related through the normalized element coordinate ξ.

The values of x (ξ) and u (ξ) are obtained from a linear interpolation of the nodal variables and

then plotted as u (x). The points at ξ = 0.2 are emphasized.
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0

1

1
ξ

ξ
0

1

10.5

0.5

ϕ2 (ξ)

ϕ3 (ξ)

(c) ϕ3 (ξ) = 2ξ (ξ − 0.5)

(a) ϕ1 (ξ) = 2 (ξ − 1) (ξ − 0.5) (b) ϕ2 (ξ) = 4ξ (1− ξ)

ξ
0

1

1

ϕ1 (ξ)

0.5

FIGURE 1.8: One-dimensional quadratic basis functions.

where

ϕ1 (ξ1, ξ2) = (1− ξ1) (1− ξ2)

ϕ2 (ξ1, ξ2) = ξ1 (1− ξ2)

ϕ3 (ξ1, ξ2) = (1− ξ1) ξ2

ϕ4 (ξ1, ξ2) = ξ1ξ2

(1.6)

Note that ϕ1 (ξ1, ξ2) = ϕ1 (ξ1)ϕ1 (ξ2) where ϕ1 (ξ1) and ϕ1 (ξ2) are the one-dimensional linear

basis functions. Similarly, ϕ2 (ξ1, ξ2) = ϕ2 (ξ1)ϕ1 (ξ2) . . . etc.

These four bilinear basis functions are illustrated in Figure 1.9.

Notice that ϕn (ξ1, ξ2) is 1 at node n and zero at the other three nodes. This ensures that the

temperature u (ξ1, ξ2) receives a contribution from each nodal parameter un weighted by ϕn (ξ1, ξ2)
and that when u (ξ1, ξ2) is evaluated at node n it takes on the value un.

As before the geometry of the element is defined in terms of the node positions (xn, yn), n =
1, . . . , 4 by

x =
∑

n

ϕn (ξ1, ξ2)xn

y =
∑

n

ϕn (ξ1, ξ2) yn
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ξ1

ξ2

ξ1

node 3

node 4

node 2 1

0
node 1

ξ2

ξ1

ξ2

ξ1

0

1

0

1

ξ2

ϕ1 ϕ3

ϕ2 ϕ4

FIGURE 1.9: Two-dimensional bilinear basis functions.
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which provide the mapping between the mathematical space (ξ1, ξ2) (where 0 ≤ ξ1, ξ2 ≤ 1) and

the physical space (x, y).
Higher order 2D basis functions can be similarly constructed from products of the appropriate

1D basis functions. For example, a six-noded (see Figure 1.10) quadratic-linear element (quadratic

in ξ1 and linear in ξ2) would have

u =

6∑

n=1

ϕn (ξ1, ξ2)un

where

ϕ1 (ξ1, ξ2) = 2 (ξ1 − 1) (ξ1 − 0.5) (1− ξ2) ϕ2 (ξ1, ξ2) = 4ξ1 (1− ξ1) (1− ξ2) (1.7)

ϕ3 (ξ1, ξ2) = 2ξ1 (ξ1 − 0.5) (1− ξ2) ϕ4 (ξ1, ξ2) = 2 (ξ1 − 1) (ξ1 − 0.5) ξ2 (1.8)

ϕ5 (ξ1, ξ2) = 4ξ1 (1− ξ1) ξ2 ϕ6 (ξ1, ξ2) = 2ξ1 (ξ1 − 0.5) ξ2 (1.9)

1

0
10.50

ξ1

ξ2

1 2 3

4 5 6

FIGURE 1.10: A 6-node quadratic-linear element (node numbers circled).

Three-dimensional basis functions are formed similarly, e.g., a trilinear element basis has eight

nodes (see Figure 1.11) with basis functions

ϕ1 (ξ1, ξ2, ξ3) = (1− ξ1) (1− ξ2) (1− ξ3) ϕ2 (ξ1, ξ2, ξ3) = ξ1 (1− ξ2) (1− ξ3) (1.10)

ϕ3 (ξ1, ξ2, ξ3) = (1− ξ1) ξ2 (1− ξ3) ϕ4 (ξ1, ξ2, ξ3) = ξ1ξ2 (1− ξ3) (1.11)

ϕ5 (ξ1, ξ2, ξ3) = (1− ξ1) (1− ξ2) ξ3 ϕ6 (ξ1, ξ2, ξ3) = ξ1 (1− ξ2) ξ3 (1.12)

ϕ7 (ξ1, ξ2, ξ3) = (1− ξ1) ξ2ξ3 ϕ8 (ξ1, ξ2, ξ3) = ξ1ξ2ξ3 (1.13)

1.6 Higher Order Continuity

All the basis functions mentioned so far are Lagrange1 basis functions and provide continuity of u
across element boundaries but not higher order continuity. Sometimes it is desirable to use basis

1Joseph-Louis Lagrange (1736-1813).
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1

ξ3

ξ2

ξ1

5

6

7

8

4

2

3

FIGURE 1.11: An 8-node trilinear element.

functions which also preserve continuity of the derivative of u with respect to ξ across element

boundaries. A convenient way to achieve this is by defining two additional nodal parameters
(
du

dξ

)

n

. The basis functions are chosen to ensure that

du

dξ

∣
∣
∣
∣
ξ=0

=

(
du

dξ

)

1

= u′
1 and

du

dξ

∣
∣
∣
∣
ξ=1

=

(
du

dξ

)

2

= u′
2

and since un is shared between adjacent elements derivative continuity is ensured. Since the num-

ber of element parameters is 4 the basis functions must be cubic in ξ. To derive these cubic

Hermite2 basis functions let

u (ξ) = a + bξ + cξ2 + dξ3,

du

dξ
= b+ 2cξ + 3dξ2,

and impose the constraints

u (0) = a = u1

u (1) = a+ b+ c+ d = u2

du

dξ
(0) = b = u

′

1

du

dξ
(1) = b+ 2c+ 3d = u

′

2

2Charles Hermite (1822-1901).
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These four equations in the four unknowns a, b, c and d are solved to give

a = u1

b = u′
1

c = 3u2 − 3u1 − 2u′
1 − u′

2

d = u′
1 + u′

2 + 2u1 − 2u2

Substituting a, b, c and d back into the original cubic then gives

u (ξ) = u1 + u′
1ξ + (3u2 − 3u1 − 2u′

1 − u′
2) ξ

2 + (u′
1 + u′

2 + 2u1 − 2u2) ξ
3

or, rearranging,

u (ξ) = Ψ0
1 (ξ)u1 +Ψ1

1 (ξ)u
′
1 +Ψ0

2 (ξ)u2 +Ψ1
2 (ξ)u

′
2 (1.14)

where the four cubic Hermite basis functions are drawn in Figure 1.12.

Ψ0
1 (ξ) = 1− 3ξ2 + 2ξ3

Ψ1
1 (ξ) = ξ(ξ − 1)2

Ψ0
2 (ξ) = ξ2(3− 2ξ)

Ψ1
2 (ξ) = ξ2(ξ − 1)

1

1

1
0

1

0

1

0 1

0

slope = 1

slope = 1

ξ

ξ

ξ

ξ

FIGURE 1.12: Cubic Hermite basis functions.

One further step is required to make cubic Hermite basis functions useful in practice. The

derivative

(
du

dξ

)

n

defined at node n is dependent upon the element ξ-coordinate in the two ad-

jacent elements. It is much more useful to define a global node derivative

(
du

ds

)

n

where s is
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arclength and then use
(
du

dξ

)

n

=

(
du

ds

)

∆(n,e)

·
(
ds

dξ

)

n

(1.15)

where

(
ds

dξ

)

n

is an element scale factor which scales the arclength derivative of global node

∆ to the ξ-coordinate derivative of element node n. Thus
du

ds
is constrained to be continuous

across element boundaries rather than
du

dξ
.A two- dimensional bicubic Hermite basis requires four

derivatives per node

u,
∂u

∂ξ1
,
∂u

∂ξ2
and

∂2u

∂ξ1∂ξ2

The need for the second-order cross-derivative term can be explained as follows; If u is cubic in ξ1

and cubic in ξ2, then
∂u

∂ξ1
is quadratic in ξ1 and cubic in ξ2 , and

∂u

∂ξ2
is cubic in ξ1 and quadratic

in ξ2 . Now consider the side 1–3 in Figure 1.13. The cubic variation of u with ξ2 is specified by

the four nodal parameters u1,

(
∂u

∂ξ2

)

1

, u3 and

(
∂u

∂ξ2

)

3

. But since
∂u

∂ξ1
(the normal derivative) is

also cubic in ξ2 along that side and is entirely independent of these four parameters, four additional

parameters are required to specify this cubic. Two of these are specified by

(
∂u

∂ξ1

)

1

and

(
∂u

∂ξ1

)

3

,

and the remaining two by

(
∂2u

∂ξ1∂ξ2

)

1

and

(
∂2u

∂ξ1∂ξ2

)

3

.

ξ1

node 3 node 4

node 2

(
∂u

∂ξ1

)

3

(
∂u

∂ξ1

)

1 node 1

ξ2

FIGURE 1.13: Interpolation of nodal derivative
∂u

∂ξ1
along side 1–3.
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The bicubic interpolation of these nodal parameters is given by

u (ξ1, ξ2) = Ψ0
1 (ξ1) Ψ

0
1 (ξ2)u1 +Ψ0

2 (ξ1) Ψ
0
1 (ξ2)u2

+Ψ0
1 (ξ1) Ψ

0
2 (ξ2)u3 +Ψ0

2 (ξ1) Ψ
0
2 (ξ2)u4

+Ψ1
1 (ξ1) Ψ

0
1 (ξ2)

(
∂u

∂ξ1

)

1

+Ψ1
2 (ξ1) Ψ

0
1 (ξ2)

(
∂u

∂ξ1

)

2

+Ψ1
1 (ξ1) Ψ

0
2 (ξ2)

(
∂u

∂ξ1

)

3

+Ψ1
2 (ξ1) Ψ

0
2 (ξ2)

(
∂u

∂ξ1

)

4

+Ψ0
1 (ξ1) Ψ

1
1 (ξ2)

(
∂u

∂ξ2

)

1

+Ψ0
2 (ξ1) Ψ

1
1 (ξ2)

(
∂u

∂ξ2

)

2

+Ψ0
1 (ξ1) Ψ

1
2 (ξ2)

(
∂u

∂ξ2

)

3

+Ψ0
2 (ξ1) Ψ

1
2 (ξ2)

(
∂u

∂ξ2

)

4

+Ψ1
1 (ξ1) Ψ

1
1 (ξ2)

(
∂2u

∂ξ1∂ξ2

)

1

+Ψ1
2 (ξ1) Ψ

1
1 (ξ2)

(
∂2u

∂ξ1∂ξ2

)

2

+Ψ1
1 (ξ1) Ψ

1
2 (ξ2)

(
∂2u

∂ξ1∂ξ2

)

3

+Ψ1
2 (ξ1) Ψ

1
2 (ξ2)

(
∂2u

∂ξ1∂ξ2

)

4

(1.16)

where

Ψ0
1 (ξ) = 1− 3ξ2 + 2ξ3

Ψ1
1 (ξ) = ξ (ξ − 1)2

Ψ0
2 (ξ) = ξ2 (3− 2ξ)

Ψ1
2 (ξ) = ξ2 (ξ − 1)

(1.17)

are the one-dimensional cubic Hermite basis functions (see Figure 1.12).

As in the one-dimensional case above, to preserve derivative continuity in physical x-coordinate

space as well as in ξ-coordinate space the global node derivatives need to be specified with respect

to physical arclength. There are now two arclengths to consider: s1, measuring arclength along the

ξ1-coordinate, and s2, measuring arclength along the ξ2-coordinate. Thus

(
∂u

∂ξ1

)

n

=

(
∂u

∂s1

)

∆(n,e)

·
(
∂s1
∂ξ1

)

n
(
∂u

∂ξ2

)

n

=

(
∂u

∂s2

)

∆(n,e)

·
(
∂s2
∂ξ2

)

n
(

∂2u

∂ξ1∂ξ2

)

n

=

(
∂2u

∂s1∂s2

)

∆(n,e)

·
(
ds1
dξ1

)

n

·
(
ds2
dξ2

)

n

(1.18)

where

(
ds1
dξ1

)

n

and

(
ds2
dξ2

)

n

are element scale factors which scale the arclength derivatives of

global node ∆ to the ξ-coordinate derivatives of element node n.

The bicubic Hermite basis is a powerful shape descriptor for curvilinear surfaces. Figure 1.14

shows a four element bicubic Hermite surface in 3D space where each node has the following
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twelve parameters

x,
∂x

∂s1
,
∂x

∂s2
,

∂2x

∂s1∂s2
, y,

∂y

∂s1
,
∂y

∂s2
,

∂2y

∂s1∂s2
, z,

∂z

∂s1
,
∂z

∂s2
and

∂2z

∂s1∂s2

y

12 parameters per node

z

ξ1

ξ2

x

FIGURE 1.14: A surface formed by four bicubic Hermite elements.

1.7 Triangular Elements

Triangular elements cannot use the ξ1 and ξ2 coordinates defined above for tensor product elements

(i.e., two- and three- dimensional elements whose basis functions are formed as the product of one-

dimensional basis functions). The natural coordinates for triangles are based on area ratios and are

called Area Coordinates . Consider the ratio of the area formed from the points 2, 3 and P (x, y)
in Figure 1.15 to the total area of the triangle

L1 =
Area < P23 >

Area < 123 >
=

1

2

∣
∣
∣
∣
∣
∣

1 x y
1 x2 y2
1 x3 y3

∣
∣
∣
∣
∣
∣

/∆ = (a1 + b1x+ c1y) / (2∆)

where ∆ = 1
2

∣
∣
∣
∣
∣
∣

1 x1 y1
1 x2 y2
1 x3 y3

∣
∣
∣
∣
∣
∣

is the area of the triangle with vertices 123, and a1 = x2y3 − x3y2, b1 =

y2 − y3, c1 = x3 − x2.

Notice that L1 is linear in x and y. Similarly, area coordinates for the other two triangles

containing P and two of the element vertices are

L2 =
Area < P13 >

Area < 123 >
=

1

2

∣
∣
∣
∣
∣
∣

1 x y
1 x3 y3
1 x1 y1

∣
∣
∣
∣
∣
∣

/∆ = (a2 + b2x+ c2y) / (2∆)
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L1 =
2
3

L1 = 0

L1 = 1

L1 =
1
3

(x1, y1)

P(x,y)

Area P23

(x2, y2)2

(x3, y3)3

1

FIGURE 1.15: Area coordinates for a triangular element.

L3 =
Area < P12 >

Area < 123 >
=

1

2

∣
∣
∣
∣
∣
∣

1 x y
1 x1 y1
1 x2 y2

∣
∣
∣
∣
∣
∣

/∆ = (a3 + b3x+ c3y) / (2∆)

where a2 = x3y1−x1y3, b2 = y3−y1, c2 = x1−x3 and a3 = x1y2−x2y1, b3 = y1−y2, c3 = x2−x1.

Notice that L1 + L2 + L3 = 1.

Area coordinate L1 varies linearly from L1 = 0 when P lies at node 2 or 3 to L1 = 1 when P
lies at node 1 and can therefore be used directly as the basis function for node 1 for a three node

triangle. Thus, interpolation over the triangle is given by

u (x, y) = ϕ1 (x, y)u1 + ϕ2 (x, y)u2 + ϕ3 (x, y)u3

where ϕ1 = L1, ϕ2 = L2 and ϕ3 = L3 = 1− L1 − L2.

Six node quadratic triangular elements are constructed as shown in Figure 1.16.

1.8 Curvilinear Coordinate Systems

It is sometimes convenient to model the geometry of the region (over which a finite element solu-

tion is sought) using an orthogonal curvilinear coordinate system. A 2D circular annulus, for ex-

ample, can be modelled geometrically using one element with cylindrical polar (r, θ)-coordinates,

e.g., the annular plate in Figure 1.17a has two global nodes, the first with r = r1 and the second

with r = r2.

Global nodes 1 and 2, shown in (x, y)-space in Figure 1.17a, each map to two element vertices

in (r, θ)-space, as shown in Figure 1.17b, and in (ξ1, ξ2)-space, as shown in Figure 1.17c. The

(r, θ) coordinates at any (ξ1, ξ2) point are given by a bilinear interpolation of the nodal coordinates
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ϕ1 = L1 (2L1 − 1)

ϕ3 = L3 (2L3 − 1)

ϕ4 = 4L1L2

ϕ5 = 4L2L3

ϕ6 = 4L3L1

2

4 6

3
5

1

ϕ2 = L2 (2L2 − 1)

FIGURE 1.16: Basis functions for a six node quadratic triangular element.

(b) (c)(a)

x

r
r2r1

0 ξ1

ξ2

2π

y

1 4

2 3

2

1 4

3

21

θ

FIGURE 1.17: Defining a circular annulus with one cylindrical polar element. Notice that element

vertices 1 and 2 in (r, θ)-space or (ξ1, ξ2)-space, as shown in (b) and (c), respectively, map onto the

single global node 1 in (x, y)-space in (a). Similarly, element vertices 3 and 4 map onto global

node 2.
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rn and θn as

r = ϕn (ξ1, ξ2) · rn
θ = ϕn (ξ1, ξ2) · θn

where the basis functions ϕn (ξ1, ξ2) are given by (1.6).

Three orthogonal curvilinear coordinate systems are defined here for use in later sections.

Cylindrical polar (r, θ, z) :

x = r cos θ

y = r sin θ

z = z

(1.19)

Spherical polar (r, θ, φ) :

x = r cos θ cos φ

y = r sin θ cos φ

z = r sin φ

(1.20)

Prolate spheroidal (λ, µ, θ) :

x = d coshλ cosµ

y = d sinhλ sinµ cos θ

z = d sinhλ sinµ sin θ

(1.21)

y

z

x

θ

µ

λ

r

d

FIGURE 1.18: Prolate spheroidal coordinates.
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The prolate spheroidal coordinates rae illustrated in Figure 1.18 and a single prolate spheroidal

element is shown in Figure 1.19. The coordinates (λ, µ, θ) are all trilinear in (ξ1, ξ2, ξ3). Only four

global nodes are required provided the four global nodes map to eight element nodes as shown in

Figure 1.19.

(b)(a)

1

3

2π

θ

µ(c) (d)

3

4

4

2

3

ξ2

x

1 3

3

ξ2

1

4

z

42

2 ξ1
1

90o

2

1

42

0 λ ξ3

ξ3

ξ1

y

FIGURE 1.19: A single prolate spheroidal element, shown (a) in (x, y, z)-coordinates, (c) in

(λ, µ, θ)-coordinates and (d) in (ξ1, ξ2, ξ3)-coordinates, (b) shows the orientation of the

ξi-coordinates on the prolate spheroid.
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1.9 CMISS Examples

1. To define a 2D bilinear finite element mesh run the CMISS example number 111. The nodes

should be positioned as shown in Figure 1.20. After defining elements the mesh should

appear like the one shown in Figure 1.21.

4

1

5

6

3

2

FIGURE 1.20: Node positions for example 111.

1 2

FIGURE 1.21: 2D bilinear finite element mesh for example 111.

2. To refine a mesh run the CMISS example 113. After the first refine the mesh should appear

like the one shown in Figure 1.22.

3. To define a quadratic-linear element run the cmiss example 115.

4. To define a 3D trilinear element run CMISS example 121.

5. To define a 2D cubic Hermite-linear finite element mesh run example 114.

6. To define a triangular element mesh run CMISS example 116 (see Figure 1.24).

7. To define a bilinear mesh in cylindrical polar coordinates run CMISS example 122.
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41 23

4

1
7

8

2

5

9

10
6

3

FIGURE 1.22: First refined mesh for example 113

1

4
5

2

6

1 35 6 2 4

12

11
137

8 14
10

9
3

FIGURE 1.23: Second refined mesh for example 113

1

3

2

4

FIGURE 1.24: Defining a triangular mesh for example 116





Chapter 2

Steady-State Heat Conduction

2.1 One-Dimensional Steady-State Heat Conduction

Our first example of solving a partial differential equation by finite elements is the one-dimensional

steady-state heat equation. The equation arises from a simple heat balance over a region of con-

ducting material:

Rate of change of heat flux = heat source per unit volume

or
d

dx
(heat flux) + heat sink per unit volume = 0

or
d

dx

(

−k
du

dx

)

+ q (u, x) = 0

where u is temperature, q (u, x) the heat sink and k the thermal conductivity (Watts/m/◦C).

Consider the case where q = u

− d

dx

(

k
du

dx

)

+ u = 0 0 < x < 1 (2.1)

subject to boundary conditions: u (0) = 0 and u (1) = 1.

This equation (with k = 1) has an exact solution

u (x) =
e

e2 − 1

(
ex − e−x

)
(2.2)

with which we can compare the approximate finite element solutions.

To solve Equation (2.1) by the finite element method requires the following steps:

1. Write down the integral equation form of the heat equation.

2. Integrate by parts (in 1D) or use Green’s Theorem (in 2D or 3D) to reduce the order of

derivatives.
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3. Introduce the finite element approximation for the temperature field with nodal parameters

and element basis functions.

4. Integrate over the elements to calculate the element stiffness matrices and RHS vectors.

5. Assemble the global equations.

6. Apply the boundary conditions.

7. Solve the global equations.

8. Evaluate the fluxes.

2.1.1 Integral equation

Rather than solving Equation (2.1) directly, we form the weighted residual

∫

Rω.dx = 0 (2.3)

where R is the residual

R = − d

dx

(

k
du

dx

)

+ u (2.4)

for an approximate solution u and ω is a weighting function to be chosen below. If u were an exact

solution over the whole domain, the residual R would be zero everywhere. But, given that in real

engineering problems this will not be the case, we try to obtain an approximate solution u for which

the residual or error (i.e., the amount by which the differential equation is not satisfied exactly at a

point) is distributed evenly over the domain. Substituting Equation (2.4) into Equation (2.3) gives

1∫

0

{

− d

dx

(

k
du

dx

)

ω + uω

}

dx = 0 (2.5)

This formulation of the governing equation can be thought of as forcing the residual or error to

be zero in a spatially averaged sense. More precisely, ω is chosen such that the residual is kept

orthogonal to the space of functions used in the approximation of u (see step 3 below).

2.1.2 Integration by parts

A major advantage of the integral equation is that the order of the derivatives inside the integral can

be reduced from two to one by integrating by parts (or, equivalently for 2D problems, by applying

Green’s theorem - see later). Thus, substituting f = ω and g = −k
du

dx
into the integration by parts

formula
1∫

0

f
dg

dx
dx = [f.g]10 −

1∫

0

g
df

dx
dx
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gives
1∫

0

ω
d

dx

(

−k
du

dx

)

dx =

[

ω

(

−k
du

dx

)]1

0

−
1∫

0

(

−k
du

dx

dω

dx

)

dx

and Equation (2.5) becomes

1∫

0

(

k
du

dx

dω

dx
+ uω

)

dx =

[

k
du

dx
ω

]1

0

(2.6)

2.1.3 Finite element approximation

We divide the domain 0 < x < 1 into 3 equal length elements and replace the continuous field

variable u (x) within each element by the parametric finite element approximation

u (ξ) = ϕ1 (ξ)u1 + ϕ2 (ξ)u2 = ϕn (ξ)un

x (ξ) = ϕ1 (ξ)x1 + ϕ2 (ξ)x2 = ϕn (ξ)xn

(summation implied by repeated index) where ϕ1 (ξ) = 1 − ξ and ϕ2 (ξ) = ξ are the linear basis

functions for both u and x.

We also choose ω = ϕm (called the Galerkin1 assumption). This forces the residual R to be

orthogonal to the space of functions used to represent the dependent variable u, thereby ensuring

that the residual, or error, is monotonically reduced as the finite element mesh is refined (see later

for a more complete justification of this very important step) .

The domain integral in Equation (2.6) can now be replaced by the sum of integrals taken sepa-

rately over the three elements

1∫

0

· dx =

1
3∫

0

· dx+

2
3∫

1
3

· dx+

1∫

2
3

· dx

and each element integral is then taken over ξ-space

x2∫

x1

· dx =

1∫

0

·J dξ

where J =

∣
∣
∣
∣

dx

dξ

∣
∣
∣
∣

is the Jacobian of the transformation from x coordinates to ξ coordinates.

1Boris G. Galerkin (1871-1945). Galerkin was a Russian engineer who published his first technical paper on the

buckling of bars while imprisoned in 1906 by the Tzar in pre-revolutionary Russia. In many Russian texts the Galerkin

finite element method is known as the Bubnov-Galerkin method. He published a paper using this idea in 1915. The

method was also attributed to I.G. Bubnov in 1913.
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2.1.4 Element integrals

The element integrals arising from the LHS of Equation (2.6) have the form

1∫

0

(

k
du

dx

dω

dx
+ uω

)

J dξ (2.7)

where u = ϕnun and ω = ϕm. Since ϕn and ϕm are both functions of ξ the derivatives with respect

to x need to be converted to derivatives with respect to ξ. Thus Equation (2.7) becomes

un

1∫

0

(

k
dϕn

dξ

dξ

dx

dϕm

dξ

dξ

dx
+ ϕnϕm

)

J dξ (2.8)

Notice that un has been taken outside the integral because it is not a function of ξ. The term
dξ

dx
is

evaluated by substituting the finite element approximation x (ξ) = ϕn.xn. In this case x =
1

3
ξ or

dξ

dx
= 3 and the Jacobian is J =

dx

dξ
= 1

3
. The term multiplying the nodal parameters un is called

the element stiffness matrix, Emn

Emn =

1∫

0

(

k
dϕm

dξ

dξ

dx

dϕn

dξ

dξ

dx
+ ϕmϕn

)

J dξ =

1∫

0

(

k
dϕm

dξ
3
dϕn

dξ
3 + ϕmϕn

)
1

3
dξ

where the indices m and n are 1 or 2. To evaluate Emn we substitute the basis functions

ϕ1 (ξ) = 1− ξ or
dϕ1

dξ
= −1

ϕ2 (ξ) = ξ or
dϕ2

dξ
= 1

Thus,

E11 =
1

3

1∫

0

(

9k

(
dϕ1

dξ

)2

+ (ϕ1)
2

)

dξ =
1

3

1∫

0

(
9k (−1)2 + (1− ξ)2

)
dξ =

1

3

(

9k +
1

3

)
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=
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FIGURE 2.1: The rows of the global stiffness matrix are generated from the global weight

functions. The bar is shown at the top divided into three elements.

and, similarly,

E12 = E21 =
1

3

(

−9k +
1

6

)

E22 =
1

3

(

9k +
1

3

)

Emn =

[
1
3

(
9k + 1

3

)
1
3

(
−9k + 1

6

)

1
3

(
−9k + 1

6

)
1
3

(
9k + 1

3

)

]

Notice that the element stiffness matrix is symmetric. Notice also that the stiffness matrix, in this

particular case, is the same for all elements. For simplicity we put k = 1 in the following steps.

2.1.5 Assembly

The three element stiffness matrices (with k = 1) are assembled into one global stiffness matrix.

This process is illustrated in Figure 2.1 where rows 1, .., 4 of the global stiffness matrix (shown here

multiplied by the vector of global unknowns) are generalised from the weight function associated

with nodes 1, .., 4.

Note how each element stiffness matrix (the smaller square brackets in Figure 2.1) overlaps

with its neighbour because they share a common global node. The assembly process gives
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Notice that the first row (generating heat flux at node 1) has zeros multiplying U3 and U4 since
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nodes 3 and 4 have no direct connection through the basis functions to node 1. Finite element

matrices are always sparse matrices - containing many zeros - since the basis functions are local

to elements.

The RHS of Equation (2.6) is

[

k
du

dx
ω

]x=1

x=0

=

(

k
du

dx
ω

)∣
∣
∣
∣
x=1

−
(

k
du

dx
ω

)∣
∣
∣
∣
x=0

(2.9)

To evaluate these expressions consider the weighting function ω corresponding to each global node

(see Fig.1.6). For node 1 ω1 is obtained from the basis function ϕ1 associated with the first node

of element 1 and therefore ω1|x=0 = 1. Also, since ω1 is identically zero outside element 1,

ω1|x=1 = 0. Thus Equation (2.9) for node 1 reduces to

[

k
du

dx
ω1

]x=1

x=0

= −
(

k
du

dx

)∣
∣
∣
∣
x=0

= flux entering node 1.

Similarly,
[

k
du

dx
ωn

]x=1

x=0

= 0 (nodes 2 and 3)

and [

k
du

dx
ω4

]x=1

x=0

=

(

k
du

dx

)∣
∣
∣
∣
x=1

= flux entering node 4.

Note: k has been left in these expressions to emphasise that they are heat fluxes.

Putting these global equations together we get







28
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−53
18
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18
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+ 28
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18
0
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28
9
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9
−53

18

0 0 −53
18

28
9













U1

U2

U3

U4






=











−
(

k
du

dx

)∣
∣
∣
∣
x=0

0
0

(

k
du

dx

)∣
∣
∣
∣
x=1











(2.10)

or

Ku = f

where K is the global “stiffness” matrix, u the vector of unknowns and f the global “load” vector.

Note that if the governing differential equation had included a distributed source term that was

independent of u, this term would appear - via its weighted integral - on the RHS of Equation (2.10)

rather than on the LHS as here. Moreover, if the source term was a function of x, the contribution

from each element would be different - as shown in the next section.

2.1.6 Boundary conditions

The boundary conditions u (0) = 0 and u (1) = 1 are applied directly to the first and last nodal

values: i.e., U1 = 0 and U4 = 1. These so-called essential boundary conditions then replace the

first and last rows in the global Equation (2.10), where the flux terms on the RHS are at present
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FIGURE 2.2: Finite element solution of one-dimensional heat equation.

unknown
1st equation U1 = 0
2nd equation −53

18
U1 +56

9
U2 −53

18
U3 = 0

3rd equation −53
18
U2 +56

9
U3 −53

18
U4 = 0

4th equation U4 = 1

Note that, if a flux boundary condition had been applied, rather than an essential boundary

condition, the known value of flux would enter the appropriate RHS term and the value of U at

that node would remain an unknown in the system of equations. An applied boundary flux of zero,

corresponding to an insulated boundary, is termed a natural boundary condition, since effectively

no additional constraint is applied to the global equation. At least one essential boundary condition

must be applied.

2.1.7 Solution

Solving these equations gives: U2 = 0.2885 and U3 = 0.6098. From Equation (2.2) the exact

solutions at these points are 0.2889 and 0.6102, respectively. The finite element solution is shown

in Figure 2.2.

2.1.8 Fluxes

The fluxes at nodes 1 and 4 are evaluated by substituting the nodal solutions U1 = 0, U2 = 0.2885,

U3 = 0.6098 and U4 = 1 into Equation (2.10)

flux entering node 1 = −
(

k
du

dx

)∣
∣
∣
∣
x=0

= −0.8496 (k = 1; exact solution 0.8509)

flux entering node 4 =

(

k
du

dx

)∣
∣
∣
∣
x=1

= 1.3157 (k = 1; exact solution 1.3131)
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These fluxes are shown in Figure 2.2 as heat entering node 4 and leaving node 1, consistent with

heat flow down the temperature gradient.

2.2 An x-Dependent Source Term

Consider the addition of a source term dependent on x in Equation (2.1):

− d

dx

(

k
du

dx

)

+ u− x = 0 0 < x < 1

Equation (2.6) now becomes

1∫

0

(

k
du

dx

dω

dx
+ uω

)

dx =

[

k
du

dx
ω

]1

0

+

1∫

0

xω dx (2.11)

where the x-dependent source term appears on the RHS because it is not dependent on u. Replacing

the domain integral for this source term by the sum of three element integrals

1∫

0

xω dx =

1
3∫

0

xω dx+

2
3∫

1
3

xω dx+

1∫

2
3

xω dx

and putting x in terms of ξ gives (with
dx

dξ
=

1

3
for all three elements)

1∫

0

xω dx =
1

3

1∫

0

ξ

3
ω dξ +

1

3

1∫

0

(1 + ξ)

3
ω dξ +

1

3

1∫

0

(2 + ξ)

3
ω dξ (2.12)

where ω is chosen to be the appropriate basis function within each element. For example, the first

term on the RHS of (2.12) corresponding to element 1 is
1

9

1∫

0

ξϕm dξ, where ϕ1 = 1 − ξ and

ϕ2 = ξ . Evaluating these expressions,

1∫

0

1

9
ξ (1− ξ) dξ =

1

54

and
1∫

0

1

9
ξ2 dξ =

1

27
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Thus, the contribution to the element 1 RHS vector from the source term is

[
1
54
1
27

]

.

Similarly, for element 2,

1∫

0

1

9
(1 + ξ) (1− ξ) dξ =

2

27
and

1∫

0

1

9
(1 + ξ) ξ dξ =

5

54
gives

[
2
27
5
54

]

and for element 3,

1∫

0

1

9
(2 + ξ) (1− ξ) dξ =

7

54
and

1∫

0

1

9
(2 + ξ) ξ dξ =

5

54
gives

[
7
54
5
54

]

Assembling these into the global RHS vector, Equation (2.10) becomes
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∣
∣
∣
x=0

0
0

(

k
du

dx

)∣
∣
∣
∣
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2.3 The Galerkin Weight Function Revisited

A key idea in the Galerkin finite element method is the choice of weighting functions which are

orthogonal to the equation residual (thought of here as the error or amount by which the equation

fails to be exactly zero). This idea is illustrated in Figure 2.3.

In Figure 2.3a an exact vector ue (lying in 3D space) is approximated by a vector u = u1ϕ1

where ϕ1 is a basis vector along the first coordinate axis (representing one degree of freedom

in the system). The difference between the exact vector ue and the approximate vector u is the

error or residual r = ue − u (shown by the broken line in Figure 2.3a). The Galerkin technique

minimises this residual by making it orthogonal to ϕ1 and hence to the approximating vector u. If

a second degree of freedom (in the form of another coordinate axis in Figure 2.3b) is added, the

approximating vector is u = u1ϕ1 + u2ϕ2 and the residual is now also made orthogonal to ϕ2

and hence to u. Finally, in Figure 2.3c, a third degree of freedom (a third axis in Figure 2.3c) is

permitted in the approximation u = u1ϕ1 + u2ϕ2 + u3ϕ3 with the result that the residual (now

also orthogonal to ϕ3) is reduced to zero and u = ue. For a 3D vector space we only need three

axes or basis vectors to represent the true vector u, but in the infinite dimensional vector space

associated with a spatially continuous field u (x) we need to impose the equivalent orthogonality

condition

(∫

Rϕdx = 0

)

for every basis function ϕ used in the approximate representation of

u (x). The key point is that in this analogy the residual is made orthogonal to the current set of basis

vectors - or, equivalently, in finite element analysis, to the set of basis functions used to represent

the dependent variable. This ensures that the error or residual is minimal (in a least-squares sense)

for the current number of degrees of freedom and that as the number of degrees of freedom is
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u

ue
R

(a) (b) (c)

R

u

u
u2

u3

u1
ϕ1

u = u1ϕ1

r · ϕ1 = 0

ϕ2

u = u1ϕ1 + u2ϕ2

. . .+ r · ϕ2 = 0

ϕ3

u = u1ϕ1 + u2ϕ2 + u3ϕ3

. . .+ r · ϕ3 = 0

FIGURE 2.3: Showing how the Galerkin method maintains orthogonality between the residual

vector r and the set of basis vectors ϕi as i is increased from (a) 1 to (b) 2 to (c) 3.

increased (or the mesh refined) the error decreases monotonically.

2.4 Two and Three-Dimensional Steady-State Heat Conduction

Extending Equation (2.1) to two or three spatial dimensions introduces some additional complexity

which we examine here. Consider the three-dimensional steady-state heat equation with no source

terms:

− ∂

∂x

(

kx
∂u

∂x

)

− ∂

∂y

(

ky
∂u

∂y

)

− ∂

∂z

(

kz
∂u

∂z

)

= 0

where kx, ky and kz are the thermal diffusivities along the x, y and z axes respectively. If the

material is assumed to be isotropic, kx = ky = kz = k, and the above equation can be written as

−∇ · (k∇u) = 0 (2.13)

and, if k is spatially constant (in the case of a homogeneous material), this reduces to Laplace’s

equation k∇2
u = 0. Here we consider the solution of Equation (2.13) over the region Ω, subject

to boundary conditions on Γ (see Figure 2.4). The weighted integral equation, corresponding to

Equation (2.13), is
∫

Ω

−∇ · (k∇u)ω dΩ = 0 (2.14)

The multi-dimensional equivalent of integration by parts is the Green-Gauss theorem:

∫

Ω

(f∇ · ∇g +∇f · ∇g) dΩ =

∫

Γ

f
∂g

∂n
dΓ (2.15)
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Solution region: Ω

Solution region boundary: Γ

FIGURE 2.4: The region Ω and the boundary Γ.

(see p553 in Advanced Engineering Mathematics” by E. Kreysig, 7th edition, Wiley, 1993).

This is used (with f = ω, g = −ku and assuming that k is constant) to reduce the derivative

order from two to one as follows:

∫

Ω

−∇ · (k∇u)ω dΩ =

∫

Ω

k∇u · ∇ω dΩ−
∫

Γ

k
∂u

∂n
ω dΓ (2.16)

cf. Integration by parts is

∫

x

− d

dx

(

k
du

dx

)

ω dx =

∫

x

k
du

dx

dω

dx
dx−

[

k
du

dx
ω

]x2

x1

.

Using Equation (2.16) in Equation (2.14) gives the two-dimensional equivalent of Equation (2.6)

(but with no source term):
∫

Ω

k∇u · ∇ω dΩ =

∫

Γ

k
∂u

∂n
ω dΓ (2.17)

subject to u being given on one part of the boundary and
∂u

∂n
being given on another part of the

boundary.

The integrand on the LHS of (2.17) is evaluated using

∇u · ∇ω =
∂u

∂xk

· ∂ω

∂xk

=
∂u

∂ξi

∂ξi
∂xk

· ∂ω
∂ξj

∂ξj
∂xk

(2.18)

where u = ϕnun and ω = ϕm, as before, and the geometric terms
∂ξi
∂xk

are found from the

inverse matrix [
∂ξi
∂xk

]

=

[
∂xk

∂ξi

]−1
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or, for a two-dimensional element,






∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y




 =






∂x

∂ξ1

∂x

∂ξ2
∂y

∂ξ1

∂y

∂ξ2






−1

=
1

∂x

∂ξ1

∂y

∂ξ2
− ∂x

∂ξ2

∂y

∂ξ1






∂y

∂ξ2
− ∂x

∂ξ2

− ∂y

∂ξ1

∂x

∂ξ1






2.5 Basis Functions - Element Discretisation

Let Ω =
I⋃

i=1

Ωi, i.e., the solution region is the union of the individual elements. In each Ωi let

u = ϕnun = ϕ1u1 + ϕ2u2 + . . .+ ϕNuN and map each Ωi to the ξ1, ξ2 plane. Figure 2.5 shows an

example of this mapping. For each element, the basis functions and their derivatives are:

y

x

5

ξ1

ξ1

ξ2

ξ1

ξ2

ξ1

ξ2

ξ2

Ω3

Ω3
Ω4

Ω1

Ω2
4 5 65

9887

0 1

1

0

1 2 2 3

4 5 5 6

0
0 1

10

0

0

0

1

1

1

1

7 8 9

2

1

4

6

3

Ω4

Ω1 Ω2

FIGURE 2.5: Mapping each Ω to the ξ1, ξ2 plane in a 2× 2 element plane.
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ϕ1 = (1− ξ1)(1− ξ2)
∂ϕ1

∂ξ1
= −(1− ξ2) (2.19)

∂ϕ1

∂ξ2
= −(1− ξ1) (2.20)

(2.21)

ϕ2 = ξ1(1− ξ2)
∂ϕ2

∂ξ1
= 1− ξ2 (2.22)

∂ϕ1

∂ξ2
= −ξ1 (2.23)

(2.24)

ϕ3 = (1− ξ1)ξ2
∂ϕ3

∂ξ1
= −ξ2 (2.25)

∂ϕ3

∂ξ2
= 1− ξ1 (2.26)

(2.27)

ϕ4 = ξ1ξ2
∂ϕ4

∂ξ1
= ξ2 (2.28)

∂ϕ4

∂ξ2
= ξ1 (2.29)

2.6 Integration

The equation is
∫

Ω

k∇u · ∇ω dΩ =

∫

Γ

k
∂u

∂n
ω dΓ (2.30)

i.e.,
∫

Ω

k

(
∂u

∂x

∂ω

∂x
+

∂u

∂y

∂ω

∂y

)

dΩ =

∫

Γ

k
∂u

∂n
ω dΓ (2.31)

u has already been approximated by ϕnun and ω is a weight function but what should this be

chosen to be? For a Galerkin formulation choose ω = ϕm i.e., weight function is one of the basis

functions used to approximate the dependent variable.

This gives

∑

i

un

∫

Ω

k

(
∂ϕn

∂x

∂ϕm

∂x
+

∂ϕn

∂y

∂ϕm

∂y

)

dΩ =

∫

Γ

k
∂u

∂n
ϕm dΓ (2.32)

where the stiffness matrix is Emn where m = 1, . . . , 4 and n = 1, . . . , 4 and Fm is the (element)

load vector.

The names originated from earlier finite element applications and extension of spring systems,

i.e., F = kx where k is the stiffness of spring and F is the force/load.
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This yields the system of equations Emnun = Fm. e.g., heat flow in a unit square (see Fig-

ure 2.6). The first component E11 is calculated as

0
x

y

1

1

(ξ2)

(ξ1)

FIGURE 2.6: Considering heat flow in a unit square.

E11 = k

1∫

0

1∫

0

(1− y)2 + (1− x)2 dxdy

=
2

3
k

and similarly for the other components of the matrix.

Note that if the element was not the unit square we would need to transform from (x, y) to

(ξ1, ξ2) coordinates. In this case we would have to include the Jacobian of the transformation and

also use the chain rule to calculate
∂ϕi

∂xj

. e.g.,
∂ϕn

∂x
=

∂ϕn

∂ξ1

∂ξ1
∂x

+
∂ϕn

∂ξ2

∂ξ2
∂x

=
∂ϕn

∂ξi

∂ξi
∂x

.

The system of Emnun = Fm becomes

k
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u1
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= RHS (Right Hand Side) (2.33)

Note that the Galerkin formulation generates a symmetric stiffness matrix (this is true for self

adjoint operators which are the most common).

Given that boundary conditions can be applied and it is possible to solve for unknown nodal

temperatures or fluxes. However, typically there is more than one element and so the next step is

required.
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2.7 Assemble Global Equations

Each element stiffness matrix must be assembled into a global stiffness matrix. For example,

consider 4 elements (each of unit size) and nine nodes. Each element has the same element stiffness

matrix as that given above. This is because each element is the same size, shape and interpolation.

y

21

3 4

7 8 9

654

1 2 3 x

element numbering

global node numbering

FIGURE 2.7: Assembling 4 unit sized elements into a global stiffness matrix.
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= RHS

(2.34)
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This yields the system of equations
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= RHS

Note that the matrix is symmetric. It should also be clear that the matrix will be sparse (i.e. contains

many zeros) if there is a larger number of elements.

From this system of equations, boundary conditions can be applied and the equations solved.

To solve, firstly boundary conditions are applied to reduce the size of the system.

If at global node i, Ui is known, we can remove the ith equation and replace it with the known

value of Ui. This is because the RHS at node i is unknown, but the RHS equation is uncoupled from

other equations so these equation can be removed. Therefore the size of the system is reduced. The

final system to solve is only as big as the number of unknown values of U .

As an example to illustrate this consider fixing the temperature (U) at the left and right sides

of the plate in Figure 2.7 and insulating the top (node 8) and the bottom (node 2). This means that

there are only 3 unknown values of U at nodes (2,5 and 8), therefore there is a 3 × 3 matrix to

solve. The RHS is known at these three nodes (see below). We can then solve the 3× 3 matrix and

then multiply out the original matrix to find the unknown RHS values.

The RHS is 0 at nodes 2 and 8 because it is insulated. To find out what the RHS is at node 5

we need to examine the RHS expression

∫

Γ

∂u

∂n
ω dΓ = 0 at node 5. This is zero as flux is always

0 at internal nodes. This can be explained in two ways.

n n

Ω2Ω1

FIGURE 2.8: “Cancelling” of flux in internal nodes.

Correct way: Γ does not pass through node 5 and each basis function that is not zero at 5 is zero

on Γ

Other way:
∂u

∂n
is opposite in neighbouring elements so it cancels (see Figure 2.8).
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. . . .

. . . .

ξ
ξ1 ξ20 1ξI

f (ξ)

FIGURE 2.9: Gaussian quadrature. f (ξ) is sampled at I Gauss points ξ1, ξ2 . . . ξI .

2.8 Gaussian Quadrature

The element integrals arising from two- or three-dimensional problems can seldom be evaluated an-

alytically. Numerical integration or quadrature is therefore required and the most efficient scheme

for integrating the expressions that arise in the finite element method is Gauss-Legendre quadra-

ture.

Consider first the problem of integrating f (ξ) between the limits 0 and 1 by the sum of

weighted samples of f (ξ) taken at points ξ1, ξ2, . . . , ξI (see Figure 2.3):

1∫

0

f (ξ) dξ =
I∑

i=1

Wif (ξi) + E

Here Wi are the weights associated with sample points ξi - called Gauss points - and E is the

error in the approximation of the integral. We now choose the Gauss points and weights to exactly

integrate a polynomial of degree 2I − 1 (since a general polynomial of degree 2I − 1 has 2I
arbitrary coefficients and there are 2I unknown Gauss points and weights).

For example, with I = 2 we can exactly integrate a polynomial of degree 3:

Let

1∫

0

f (ξ) dξ = W1f (ξ1) +W2f (ξ2)

and choose f (ξ) = a+ bξ + cξ2 + dξ3. Then

1∫

0

f (ξ) dξ = a

1∫

0

dξ + b

1∫

0

ξ dξ + c

1∫

0

ξ2 dξ + d

1∫

0

ξ3 dξ (2.35)

Since a, b, c and d are arbitrary coefficients, each integral on the RHS of 2.35 must be integrated
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exactly. Thus,

1∫

0

dξ = 1 = W1.1 +W2.1 (2.36)

1∫

0

ξ dξ =
1

2
= W1.ξ1 +W2.ξ2 (2.37)

1∫

0

ξ2 dξ =
1

3
= W1.ξ

2
1 +W2.ξ

2
2 (2.38)

1∫

0

ξ3 dξ =
1

4
= W1.ξ

3
1 +W2.ξ

3
2 (2.39)

These four equations yield the solution for the two Gauss points and weights as follows:

From symmetry and Equation (2.36),

W1 = W2 =
1

2
.

Then, from (2.37),

ξ2 = 1− ξ1

and, substituting in (2.38),

ξ21 + (1− ξ1)
2 =

2

3

2ξ21 − 2ξ1 +
1

3
= 0,

giving

ξ1 =
1

2
± 1

2
√
3
.

Equation (2.39) is satisfied identically. Thus, the two Gauss points are given by

ξ1 =
1

2
− 1

2
√
3
,

ξ2 =
1

2
+

1

2
√
3
,

W1 = W2 =
1

2

(2.40)
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A similar calculation for a 5th degree polynomial using three Gauss points gives

ξ1 =
1

2
− 1

2

√

3

5
, W1 =

5

18

ξ2 =
1

2
, W2 =

4

9
(2.41)

ξ3 =
1

2
+

1

2

√

3

5
, W3 =

5

18

For two- or three-dimensional Gaussian quadrature the Gauss point positions are simply the values

given above along each ξi-coordinate with the weights scaled to sum to 1 e.g., for 2x2 Gauss

quadrature the 4 weights are all
1

4
. The number of Gauss points chosen for each ξi-direction is

governed by the complexity of the integrand in the element integral (2.8). In general two- and three-

dimensional problems the integral is not polynomial (owing to the
∂ξi
∂xj

terms which come from the

inverse of the matrix

[
∂xi

∂ξj

]

) and no attempt is made to achieve exact integration. The quadrature

error must be balanced against the discretization error. For example, if the two-dimensional basis

is cubic in the ξ1-direction and linear in the ξ2-direction, three Gauss points would be used in the

ξ1-direction and two in the ξ2-direction.

2.9 CMISS Examples

1. To solve for the steady state temperature distribution inside a plate run CMISS example 311

2. To solve for the steady state temperature distribution inside an annulus run CMISS example

312

3. To investigate the convergence of the steady state temperature distribution with mesh refine-

ment run CMISS examples 3141, 3142, 3143 and 3144.





Chapter 3

The Boundary Element Method

3.1 Introduction

Having developed the basic ideas behind the finite element method, we now develop the basic ideas

of the boundary element method. There are several key differences between these two methods,

one of which involves the choice of weighting function (recall the Galerkin finite element method

used as a weighting function one of the basis functions used to approximate the solution variable).

Before launching into the boundary element method we must briefly develop some ideas that are

central to the weighting function used in the boundary element method.

3.2 The Dirac-Delta Function and Fundamental Solutions

Before one applies the boundary element method to a particular problem one must obtain a funda-

mental solution (which is similar to the idea of a particular solution in ordinary differential equa-

tions and is the weighting function). Fundamental solutions are tied to the Dirac1 Delta function

and we deal with both here.

3.2.1 Dirac-Delta function

What we do here is very non-rigorous. To gain an intuitive feel for this unusual function, consider

the following sequence of force distributions applied to a large plate as shown in Figure 3.1

wn (x) =

{
n
2

|x| < 1
n

0 |x| > 1
n

1Paul A.M. Dirac (1902-1994) was awarded the Nobel Prize (with Erwin Schrodinger) in 1933 for his work in

quantum mechanics. Dirac introduced the idea of the “Dirac Delta” intuitively, as we will do here, around 1926-27.

It was rigorously defined as a so-called generalised function by Schwartz in 1950-51, and strictly speaking we should

talk about the “Dirac Delta Distribution”.
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Each has the property that

∞∫

−∞

wn (x) dx = 1 (i.e., the total force applied is unity)

but as n increases the area of force application decreases and the force/unit area increases.

w1

w2

w3

w4

1
2

1
4

1
3

1

3
2

2

11
2

FIGURE 3.1: Illustrations of unit force distributions wn.

As n gets larger we can easily see that the area of application of the force becomes smaller

and smaller, the magnitude of the force increases but the total force applied remains unity. If we

imagine letting n → ∞ we obtain an idealised “point” force of unit strength, given the symbol

δ (x), acting at x = 0. Thus, in a nonrigorous sense we have

δ (x) = lim
n→∞

wn (x) the Dirac Delta“function”.

This is not a function that we are used to dealing with because we have δ (x) = 0 if x 6= 0
and “δ (0) = ∞” i.e., the “function” is zero everywhere except at the origin, where it is infinite.

However, we have

∞∫

−∞

δ (x) dx = 1 since each

∞∫

−∞

wn (x) dx = 1.

The Dirac delta “function” is not a function in the usual sense, and it is more correctly referred

to as the Dirac delta distribution. It also has the property that for any continuous function h (x)

∞∫

−∞

δ (x) h (x) dx = h (0) (3.1)
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A rough proof of this is as follows

∞∫

−∞

δ (x) h (x) dx = lim
n→∞

∞∫

−∞

wn (x) h (x) dx by definition of δ (x)

= lim
n→∞

n

2

1
n∫

− 1
n

h (x) dx by definition of wn (x)

= lim
n→∞

n

2
h (ξ)

2

n
by the Mean Value Theorem, where ξ ∈

(

−1

n
,
1

n

)

= h (0) since ξ ∈
(

−1

n
,
1

n

)

and as n → ∞, ξ → 0

The above result (Equation (3.1)) is often used as the defining property of the Dirac delta in

more rigorous derivations. One does not usually talk about the values of the Dirac delta at a

particular point, but rather its integral behaviour. Some properties of the Dirac delta are listed

below
∞∫

−∞

δ (ξ − x) h (x) dx = h (ξ) (3.2)

(Note: δ (ξ − x) is the Dirac delta distribution centred at x = ξ instead of x = 0)

δ (ξ − x) = H ′ (ξ − t) (3.3)

where H (ξ − t) =

{

0 if ξ < t

1 if ξ > t
(i.e., the Dirac Delta function is the slope of the Heaviside2

step function.)

δ (ξ − x, η − y) = δ (ξ − x) δ (η − y) (3.4)

(i.e., the two dimensional Dirac delta is just a product of two one-dimensional Dirac deltas.)

3.2.2 Fundamental solutions

We develop here the fundamental solution (also called the freespace Green’s3 function) for Laplace’s

Equation in two variables. The fundamental solution of a particular equation is the weighting func-

tion that is used in the boundary element formulation of that equation. It is therefore important to

be able to find the fundamental solution for a particular equation. Most of the common equations

have well-known fundamental solutions (see Appendix 3.16). We briefly illustrate here how to find

a simple fundamental solution.

2Oliver Heaviside (1850-1925) was a British physicist, who pioneered the mathematical study of electrical circuits

and helped develop vector analysis.
3George Green (1793-1841) was a self-educated miller’s son. Most widely known for his integral theorem (the

Green-Gauss theorem).
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Consider solving the Laplace Equation
∂2u

∂x2
+

∂2u

∂y2
= 0 in some domain Ω ∈ ℜ2.

The fundamental solution for this equation (analogous to a particular solution in ODE work) is

a solution of
∂2ω

∂x2
+

∂2ω

∂y2
+ δ (ξ − x, η − y) = 0 (3.5)

in ℜ2 (i.e., we solve the above without reference to the original domain Ω or original boundary

conditions). The method is to try and find solution to ∇2
ω = 0 in ℜ2 which contains a singularity

at the point (ξ, η). This is not as difficult as it sounds. We expect the solution to be symmetric

about the point (ξ, η) since δ (ξ − x, η − y) is symmetric about this point. So we adopt a local

polar coordinate system about the singular point (ξ, η).
Let

r =

√

(ξ − x)2 + (η − y)2

Then, from Section 1.8 we have

∇2
ω =

1

r

∂

∂r

(

r
∂ω

∂r

)

+
1

r2
∂2ω

∂θ2
(3.6)

For r > 0, δ (ξ − x, η − y) = 0 and owing to symmetry,
∂2ω

∂θ2
is zero. Thus Equation (3.6) becomes

1

r

∂

∂r

(

r
∂ω

∂r

)

= 0

This can be solved by straight (one-dimensional) integration. The solution is

ω = A log r +B (3.7)

Note that this function is singular at r = 0 as required.

To find A and B we make use of the integral property of the Delta function. From Equa-

tion (3.5) we must have
∫

D

∇2
ω dD = −

∫

D

δ dD = −1 (3.8)

where D is any domain containing r = 0.

We choose a simple domain to allow us to evaluate the above integrals. If D is a small disk of
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D
ε

Ω

(ξ, η)

x

y

FIGURE 3.2: Domain used to evaluate fundamental solution coefficients.

radius ε > 0 centred at r = 0 (Figure 3.2) then from the Green-Gauss theorem

∫

D

∇2
ω dD =

∫

∂D

∂ω

∂n
dS ∂D is the surface of the disk D

=

∫

∂D

∂ω

∂r
dS since D is a disk centred at r = 0 so n and r are in the same direction

=
A

ε
2πε from Equation (3.7), and the fact that D is a disc of radius ε

= 2πA

Therefore, from Equation (3.8)

A = − 1

2π
.

So we have

ω = − 1

2π
log r +B

B remains arbitrary but usually put equal to zero, so that the fundamental solution for the two-

dimensional Laplace Equation is

ω = − 1

2π
log r

(

=
1

2π
log

1

r

)

(3.9)

where r =
√

(ξ − x)2 + (η − y)2 (singular at the point (ξ, η)).
The fundamental solution for the three-dimensional Laplace Equation can be found by a similar
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technique. The result is

ω =
1

4πr

where r is now a distance measured in three-dimensions.

3.3 The Two-Dimensional Boundary Element Method

We are now at a point where we can develop the boundary element method for the solution of

∇2
u = 0 in a two-dimensional domain Ω. The basic steps are in fact quite similar to those used for

the finite element method (refer Section 2.1). We firstly must form an integral equation from the

Laplace Equation by using a weighted integral equation and then use the Green-Gauss theorem.

From Section 2.4 we have seen that

0 =

∫

Ω

∇2
u.ω dΩ =

∫

∂Ω

∂u

∂n
ω dΓ−

∫

Ω

∇u.∇ω dΩ (3.10)

This was the starting point for the finite element method. To derive the starting equation for

the boundary element method we use the Green-Gauss theorem again on the second integral. This

gives

0 =

∫

∂Ω

∂u

∂n
ω dΓ−

∫

Ω

∇u.∇ω dΩ

=

∫

∂Ω

∂u

∂n
ω dΓ−

∫

∂Ω

u
∂ω

∂n
dΓ +

∫

Ω

u∇2
ω dΩ

(3.11)

For the Galerkin FEM we chose ω, the weighting function, to be ϕm, one of the basis functions

used to approximate u. For the boundary element method we choose ω to be the fundamental

solution of Laplace’s Equation derived in the previous section i.e.,

ω = − 1

2π
log r

where r =
√

(ξ − x)2 + (η − y)2 (singular at the point (ξ, η) ∈ Ω).

Then from Equation (3.11), using the property of the Dirac delta

∫

Ω

u∇2
ω dΩ = −

∫

Ω

uδ (ξ − x, η − y) dΩ = −u (ξ, η) (ξ, η) ∈ Ω (3.12)

i.e., the domain integral has been replaced by a point value.
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Thus Equation (3.11) becomes

u (ξ, η) +

∫

∂Ω

u
∂ω

∂n
dΓ =

∫

∂Ω

∂u

∂n
ω dΓ (ξ, η) ∈ Ω (3.13)

This equation contains only boundary integrals (and no domain integrals as in Finite Elements)

and is referred to as a boundary integral equation. It relates the value of u at some point inside

the solution domain to integral expressions involving u and
∂u

∂n
over the boundary of the solution

domain. Rather than having an expression relating the value of u at some point inside the domain

to boundary integrals, a more useful expression would be one relating the value of u at some point

on the boundary to boundary integrals. We derive such an expression below.

The previous equation (Equation (3.13)) holds if (ξ, η) ∈ Ω (i.e., the singularity of Dirac Delta

function is inside the domain). If (ξ, η) is outside Ω then

∫

Ω

u∇2
ω dΩ = −

∫

Ω

uδ (ξ − x, η − y) dΩ = 0

since the integrand of the second integral is zero at every point except (ξ, η) and this point is

outside the region of integration. The case which needs special consideration is when the singular

point (ξ, η) is on the boundary of the domain Ω. This case also happens to be the most important

for numerical work as we shall see. The integral expression we will ultimately obtain is simply

Equation (3.13) with u (ξ, η) replaced by
1

2
u (ξ, η). We can see this in a non-rigorous way as

follows. When (ξ, η) was inside the domain, we integrated around the entire singularity of the

Dirac Delta to get u (ξ, η) in Equation (3.13). When (ξ, η) is on the boundary we only have half of

the singularity contained inside the domain, so we integrate around one-half of the singularity to

get
1

2
u (ξ, η). Rigorous details of where this coefficient

1

2
comes from are given below.

Let P denote the point (ξ, η) ∈ Ω. In order to be able to evaluate

∫

Ω

u∇2
ω dΩ in this case we

enlarge Ω to include a disk of radius ε about P (Figure 3.3). We call this enlarged region Ω′ and

let Γ′ = Γ−ε ∪ Γε.

Now, since P is inside the enlarged region Ω′, Equation (3.13) holds for this enlarged domain

i.e.,

u (P ) +

∫

Γ−ε∪Γε

u
∂ω

∂n
dΓ =

∫

Γ−ε∪Γε

∂u

∂n
ω dΓ (3.14)

We must now investigate this equation as limε↓0 . There are 4 integrals to consider, and we look at

each of these in turn.
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Γ−ε

Ω

Ω′
Γε

ε

P

FIGURE 3.3: Illustration of enlarged domain when singular point is on the boundary.

Firstly consider

∫

Γε

u
∂ω

∂n
dΓ =

∫

Γε

u
∂

∂n

(

− 1

2π
log r

)

dΓ by definition of ω

=

∫

Γε

u
∂

∂r

(

− 1

2π
log r

)

dΓ since
∂

∂n
≡ ∂

∂r
on Γε

= − 1

2π

∫

Γε

u

r
dΓ

= − 1

2π

1

ε

∫

Γε

u dΓ since r = ε on Γε

→ − 1

2π

1

ε
u (P )πε

by the mean value theorem for a surface with a unique tangent at P .

Thus

lim
ε↓0

∫

Γε

u
∂ω

∂n
dΓ = lim

ε↓0

(

− 1

2π

u (P )

ε
πε

)

= −u (P )

2
(3.15)

By a similar process we obtain

lim
ε↓0

∫

Γε

ω
∂u

∂n
dΓ = lim

ε↓0

(

− 1

2π

∂u

∂n
(P )πε log ε

)

= 0 (3.16)

since limε log ε↓0 as limε↓0 .

It only remains to consider the integrand over Γ−ε. For “nice” integrals (which includes the
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integrals we are dealing with here) we have

lim
ε↓0





∫

Γ−ε

(nice integrand)dΓ



 =

∫

Γ

(nice integrand) dΓ

since Γ−ε → Γ as limε↓0 .

Note: If the integrand is too badly behaved we cannot always replace Γ−ε by Γ in the limit and

one must deal with Cauchy Principal Values. (refer Section 5.8)

Thus we have

lim
ε→0





∫

Γ−ε

∂u

∂n
ω dΓ



 =

∫

Γ

∂u

∂n
ω dΓ (3.17)

lim
ε→0





∫

Γ−ε

∂ω

∂n
u dΓ



 =

∫

Γ

∂ω

∂n
u dΓ (3.18)

Combining Equations (3.14)–(3.18) we get

u (P ) +

∫

Γ

u
∂ω

∂n
dΓ =

1

2
u (P ) +

∫

Γ

∂u

∂n
ω dΓ

or
1

2
u (P ) +

∫

Γ

u
∂ω

∂n
dΓ =

∫

Γ

∂u

∂n
ω dΓ

where P = (ξ, η) ∈ ∂Ω (i.e., singular point is on the boundary of the region).

Note: The above is true if the point P is at a smooth point (i.e., a point with a unique tangent) on

the boundary of Ω. If P happens to lie at some nonsmooth point e.g. a corner, then the coefficient
1

2
is replaced by

α

2π
where α is the internal angle at P (Figure 3.4).

α

Ω

P

FIGURE 3.4: Illustration of internal angle α.
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Thus we get the boundary integral equation.

c (P )u (P ) +

∫

Γ

u
∂ω

∂n
dΓ =

∫

Γ

∂u

∂n
ω dΓ (3.19)

where

ω = − 1

2π
log r

r =

√

(ξ − x)2 + (η − y)2

c (P ) =







1 if P ∈ Ω
1
2

if P ∈ Γ and Γ smooth at P
internal angle

2π
if P ∈ Γ and Γ not smooth at P

For three-dimensional problems, the boundary integral equation expression above is the same,

with

ω =
1

4πr

r =

√

(ξ − x)2 + (η − y)2 + (γ − z)2

c (P ) =







1 if P ∈ Ω
1
2

if P ∈ Γ and Γ smooth at P
inner solid angle

4π
if P ∈ Γ and Γ not smooth at P

Equation (3.19) involves only the surface distributions of u and
∂u

∂n
and the value of u at a

point P . Once the surface distributions of u and
∂u

∂n
are known, the value of u at any point P

inside Ω can be found since all surface integrals in Equation (3.19) are then known. The procedure

is thus to use Equation (3.19) to find the surface distributions of u and
∂u

∂n
and then (if required)

use Equation (3.19) to find the solution at any point P ∈ Ω . Thus we solve for the boundary data

first, and find the volume data as a separate step.

Since Equation (3.19) only involves surface integrals, as opposed to volume integrals in a finite

element formulation, the overall size of the problem has been reduced by one dimension (from

volumes to surfaces). This can result in huge savings for problems with large volume to surface

ratios (i.e., problems with large domains). Also the effort required to produce a volume mesh of a

complex three-dimensional object is far greater than that required to produce a mesh of the surface.

Thus the boundary element method offers some distinct advantages over the finite element method

in certain situations. It also has some disadvantages when compared to the finite element method

and these will be discussed in Section 3.6. We now turn our attention to solving the boundary

integral equation given in Equation (3.19).
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3.4 Numerical Solution Procedures for the Boundary Integral

Equation

The first step is to discretise the surface Γ into some set of elements (hence the name boundary

elements).

Γ =
N⋃

j=1

Γj (3.20)

(a) (b)

FIGURE 3.5: Schematic illustration of a boundary element mesh (a) and a finite element mesh (b).

Then Equation (3.19) becomes

c (P )u (P ) +

N∑

j=1

∫

Γj

u
∂ω

∂n
dΓ =

N∑

j=1

∫

Γj

∂u

∂n
ω dΓ (3.21)

Over each element Γj we introduce standard (finite element) basis functions

uj =
∑

α

ϕαujα and qj ≡
∂uj

∂n
=
∑

α

ϕαqjα (3.22)

where uj, qj are values of u and q on element Γj and ujα, qjα are values of u and q at node α on

element Γj .

These basis functions for u and q can be any of the standard one-dimensional finite element

basis functions (although we are dealing with a two-dimensional problem, we only have to inter-

polate the functions over a one-dimensional element). In general the basis functions used for u and

q do not have to be the same (typically they are) and these basis functions can even be different to

the basis functions used for the geometry, but are generally taken to be the same (this is termed an

isoparametric formulation).

This gives

c (P )u (P ) +

N∑

j=1

∑

α

ujα

∫

Γj

ϕα

∂ω

∂n
dΓ =

N∑

j=1

∑

α

qjα

∫

Γj

ϕαω dΓ (3.23)
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This equation holds for any point P on the surface Γ. We now generate one equation per node by

putting the point P to be at each node in turn. If P is at node i, say, then we have

ciui +

N∑

j=1

∑

α

ujα

∫

Γj

ϕα

∂ωi

∂n
dΓ =

N∑

j=1

∑

α

qjα

∫

Γj

ϕαωi dΓ (3.24)

where ωi is the fundamental solution with the singularity at node i (recall ω is − 1

2π
log r , where

r is the distance from the singularity point). We can write Equation (3.24) in a more abbreviated

form as

ciui +

N∑

j=1

∑

α

ujαa
α
ij =

N∑

j=1

∑

α

qjαb
α
ij (3.25)

where

aαij =

∫

Γj

ϕα

∂ωi

∂n
dΓ and bαij =

∫

Γj

ϕαωi dΓ (3.26)

Equation (3.25) is for node i and if we have L nodes, then we can generate L equations.

We can assemble these equations into the matrix system

Au = Bq (3.27)

(compare to the global finite element equations Ku = f ) where the vectors u and q are the vectors

of nodal values of u and q. Note that the ij th component of the A matrix in general is not aαij and

similarly for B.

At each node, we must specify either a value of u or q (or some combination of these) to have a

well-defined problem. We therefore have L equations (the number of nodes) and have L unknowns

to find. We need to rearrange the above system of equations to get

Cx = f (3.28)

where x is the vector of unknowns. This can be solved using standard linear equation solvers,

although specialist solvers are required if the problem is large (refer [todo : Section ???]).

The matrices A and B (and hence C) are fully populated and not symmetric (compare to the

finite element formulation where the global stiffness matrix K is sparse and symmetric). The

size of the A and B matrices are dependent on the number of surface nodes, while the matrix

K is dependent on the number of finite element nodes (which include nodes in the domain). As

mentioned earlier, it depends on the surface to volume ratio as to which method will generate the

smallest and quickest solution.

The use of the fundamental solution as a weight function ensures that the A and B matrices

are generally well conditioned (see Section 3.5 for more on this). In fact the A matrix is diagonally

dominant (at least for Laplace’s equation). The matrix C is therefore also well conditioned and

Equation (3.28) can be solved reasonably easily.

The vector x contains the unknown values of u and q on the boundary. Once this has been

found, all boundary values of u and q are known. If a solution is then required at a point inside the
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domain, then we can use Equation (3.25) with the singular point P located at the required solution

point i.e.,

u (P ) =

N∑

j=1

∑

α

qjαb
α
Pj −

N∑

j=1

∑

α

ujαa
α
Pj (3.29)

The right hand side of Equation (3.29) contains no unknowns and only involves evaluating the

surface integrals using the fundamental solution with the singular point located at P .

3.5 Numerical Evaluation of Coefficient Integrals

We consider in detail here how one evaluates the aαij and bαij integrals for two-dimensional problems.

These integrals typically must be evaluated numerically, and require far more work and effort than

the analogous finite element integrals.

Recall that

aαij =

∫

Γj

ϕα

∂ωi

∂n
dΓ and bαij =

∫

Γj

ϕαωi dΓ

where

ωi = − 1

2π
log ri

ri = distance measured from node i

In terms of a local ξ coordinate we have

bαij =

1∫

0

ϕα (ξ)ωi (ξ) |J (ξ)| dξ (3.30)

aαij =

∫

Γj

ϕα (ξ)
∂ωi (ξ)

∂n
|J (ξ)| dξ =

1∫

0

ϕα (ξ)
∂ωi

∂ri
(ξ)

dri
dn

|J (ξ)| dξ (3.31)

The Jacobian J (ξ) can be found by

J (ξ) =
dΓ

dξ
=

ds

dξ
=

√
(
dx

dξ

)2

+

(
dy

dξ

)2

(3.32)

where s represents the arclength and
dx

dξ
and

dy

dξ
can be found by straight differentiation of the

interpolation expression for x (ξ) and y (ξ).
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The fundamental solution is

ωi = − 1

2π
log (ri (ξ))

ri (ξ) =

√

(x (ξ)− xi)
2 + (y (ξ)− yi)

2

where (xi, yi) are the coordinates of node i.

To find
dri
dn

we note that

dri
dn

= ∇ri · n̂ (3.33)

where n̂ is a unit outward normal vector. To find a unit normal vector, we simply rotate the tangent

vector (given by (x′ (ξ) , y′ (ξ)) ) by
π

2
in the appropriate direction and then normalise.

Thus every expression in the integrands of the aαij and bαij integrals can be found at any value of

ξ, and the integrals can therefore be evaluated numerically using some suitable quadrature schemes.

If node i is well removed from element Γj then standard Gaussian quadrature can be used to

evaluate these integrals. However, if node i is in Γj (or close to it) we see that ri approaches 0

and the fundamental solution ωi tends to ∞. The integral still exists, but the integrand becomes

singular. In such cases special care must be taken - either by using special quadrature schemes,

large numbers of Gauss points or other special treatment.

node i

ri

(a)

Γj

(b)

node i Γj

ri

FIGURE 3.6: Illustration of the decrease in ri as node i approaches element Γj .

The integrals for which node i lies in element Γj are in general the largest in magnitude and

lead to the diagonally dominant matrix equation. It is therefore important to ensure that these

integrals are calculated as accurately as possible since these terms will have most influence on the

solution. This is one of the disadvantages of the BEM - the fact that singular integrands must be

accurately integrated.

A relatively straightforward way to evaluate all the integrals is simply to use Gaussian quadra-

ture with varying number of quadrature points, depending on how close or far the singular point is
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from the current element. This is not very elegant or efficient, but has the benefit that it is relatively

easy to implement. For the case when node i is contained in the current element one can use special

quadrature schemes which are designed to integrate log-type functions. These are to be preferred

when one is dealing with Laplace’s equation. However, these special log-type schemes cannot be

so readily used on other types of fundamental solution so for a general purpose implementation,

Gaussian quadrature is still the norm. It is possible to incorporate adaptive integration schemes

that keep adding more quadrature points until some error estimate is small enough, or also to sub-

divide the current element into two or more smaller elements and evaluate the integral over each

subelement. It is also possible to evaluate the “worst” integrals by using simple solutions to the

governing equation, and this technique is the norm for elasticity problems (Section 5.8). Details

on each of these methods is given in Section 3.8. It should be noted that research still continues in

an attempt to find more efficient ways of evaluating the boundary element integrals.

3.6 The Three-Dimensional Boundary Element Method

The three-dimensional boundary element method is very similar to the two-dimensional bound-

ary element method discussed above. As noted above, the three-dimensional boundary integral

equation is the same as the two-dimensional equation (3.19), with ω and c (P ) being defined as

in Section 3.3. The numerical solution procedure also parallels that given in Section 3.4, and the

expressions given for aαij and bαij apply equally well to the three-dimensional case. The only real

difference between the two procedures is how to numerically evaluate the terms in each integrand

of these coefficient integrals.

As in Section 3.5 we illustrate how to evaluate each of the terms in the integrand of aαij and bαij .
The relevant expressions are

aαij =

∫

Γj

ϕα

∂ωi

∂n
dΓ

=

1∫

0

1∫

0

ϕα (ξ1, ξ2)
∂ωi

∂ri
(ξ1, ξ2)

dri
dn

|J (ξ1, ξ2)| dξ1 dξ2 (3.34)

bαij =

∫

Γj

ϕαωi dΓ

=

1∫

0

1∫

0

ϕα (ξ1, ξ2)ωi (ξ1, ξ2) |J (ξ1, ξ2)| dξ1 dξ2 (3.35)

The fundamental solution is

ωi (ξ1, ξ2) =
1

4πri (ξ1, ξ2)

where ri (ξ1, ξ2) =

√

(x (ξ1, ξ2)− xi)
2 + (y (ξ1, ξ2)− yi)

2 + (z (ξ1, ξ2)− zi)
2
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where (xi, yi, zi) are the coordinates of node i. As before we use
dri
dn

= ∇ri · n̂ to find
dri
dn

.

The unit outward normal n̂ is found by normalising the cross product of the two tangent vectors

t1 =

(
∂x

∂ξ1
,
∂y

∂ξ1
,
∂z

∂ξ1

)

and t2 =

(
∂x

∂ξ2
,
∂y

∂ξ2
,
∂z

∂ξ2

)

(it relies on the user of any BEM code to

ensure that the elements have been defined with a consistent set of element coordinates ξ1 and ξ2).
The Jacobian J (ξ1, ξ2) is given by ‖t1 × t2‖ (where t1 and t2 are the two tangent vectors).

Note that this is different for the determinant in a two-dimensional finite element code - in that

case we are dealing with a two-dimensional surface in two-dimensional space, whereas here we

have a (possibly curved) two-dimensional surface in three-dimensional space.

The integrals are evaluated numerically using some suitable quadrature schemes (see Sec-

tion 3.8) (typically a Gauss-type scheme in both the ξ1 and ξ2 directions).

3.7 A Comparison of the FE and BE Methods

We comment here on some of the major differences between the two methods. Depending on the

application some of these differences can either be considered as advantageous or disadvantageous

to a particular scheme.

1. FEM: An entire domain mesh is required.

BEM: A mesh of the boundary only is required.

Comment: Because of the reduction in size of the mesh, one often hears of people saying

that the problem size has been reduced by one dimension. This is one of the major pluses of

the BEM - construction of meshes for complicated objects, particularly in 3D, is a very time

consuming exercise.

2. FEM: Entire domain solution is calculated as part of the solution.

BEM: Solution on the boundary is calculated first, and then the solution at domain points (if

required) are found as a separate step.

Comment: There are many problems where the details of interest occur on the boundary, or

are localised to a particular part of the domain, and hence an entire domain solution is not

required.

3. FEM: Reactions on the boundary typically less accurate than the dependent variables.

BEM: Both u and q of the same accuracy.

4. FEM: Differential Equation is being approximated.

BEM: Only boundary conditions are being approximated.

Comment: The use of the Green-Gauss theorem and a fundamental solution in the formu-

lation means that the BEM involves no approximations of the differential Equation in the

domain - only in its approximations of the boundary conditions.

5. FEM: Sparse symmetric matrix generated.

BEM: Fully populated nonsymmetric matrices generated.

Comment: The matrices are generally of different sizes due to the differences in size of

the domain mesh compared to the surface mesh. There are problems where either method
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can give rise to the smaller system and quickest solution - it depends partly on the volume

to surface ratio. For problems involving infinite or semi-infinite domains, BEM is to be

favoured.

6. FEM: Element integrals easy to evaluate.

BEM: Integrals are more difficult to evaluate, and some contain integrands that become

singular.

Comment: BEM integrals are far harder to evaluate. Also the integrals that are the most

difficult (those containing singular integrands) have a significant effect on the accuracy of

the solution, so these integrals need to be evaluated accurately.

7. FEM: Widely applicable. Handles nonlinear problems well.

BEM: Cannot even handle all linear problems.

Comment: A fundamental solution must be found (or at least an approximate one) before the

BEM can be applied. There are many linear problems (e.g., virtually any nonhomogeneous

equation) for which fundamental solutions are not known. There are certain areas in which

the BEM is clearly superior, but it can be rather restrictive in its applicability.

8. FEM: Relatively easy to implement.

BEM: Much more difficult to implement.

Comment: The need to evaluate integrals involving singular integrands makes the BEM at

least an order of magnitude more difficult to implement than a corresponding finite element

procedure.

3.8 More on Numerical Integration

The BEM involves integrals whose integrands in generally become singular when the source point

is contained in the element of integration. If one uses constant or linear interpolation for the

geometry and dependent variable, then it is possible to obtain analytic expressions to most (if not

all) of the integrals that will appear in the BEM (at least for two-dimensional problems). The

expressions can become quite lengthy to write down and evaluate, but benefit from the fact that

they will be exact. However, when one begins to use general curved elements and/or solve three-

dimensional problems then the integrals will not be available as analytic expressions. The basic

tool for evaluation of these integrals is quadrature. As discussed in Section 2.8 a one-dimensional

integral is approximated by a sum in which the integrand is evaluated at certain discrete points or

abscissa
1∫

0

f (ξ) dξ ≈
N∑

i=1

f (ξi)wi

where wi are the weights and ξi are the abscissa.

The weights and abscissa for the Gaussian quadrature scheme of order N are chosen so that the

above expression will exactly integrate any polynomial of degree 2N−1 or less. For the numerical

evaluation of two or three-dimensional integrals, a Gaussian scheme can be used of each variable

of integration if the region of integration is rectangular. This is generally not the optimal choice

for the weights and abscissae but it allows easy extension to higher order integration.
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3.8.1 Logarithmic quadrature and other special schemes

Low order Gaussian schemes are generally sufficient for all FEM integrals, but that is not the

case for BEM. For a two-dimensional BEM solution of Laplace’s equation, integrals of the form
1∫

0

log (ξ) f (ξ) dξ will be required. It is relatively common to use logarithmic schemes for this.

These are obtained by approximating the integral as

1∫

0

log (ξ) f (ξ) dξ ≈
N∑

i=1

f (ξi)wi

i.e., the log function has been factored out.

In the same way as Gaussian quadrature schemes were developed in Section 2.8, log quadrature

schemes can be developed which will exactly integrate polynomial functions f (ξ). Tables of these

are given below

Abscissas = ri Weight Factors = wi

n ξi −wi n ξi −wi n ξi −wi

2 0.112009 0.718539 3 0.063891 0.513405 4 0.041448 0.383464

0.602277 0.281461 0.368997 0.391980 0.245275 0.386875

0.766880 0.094615 0.556165 0.190435

0.848982 0.039225

TABLE 3.1: Abscissas and weight factors for Gaussian integration for integrands with a

logarithmic singularity.

It is possible to develop similar quadrature schemes for use in the BEM solution of other PDEs,

which use different fundamental solutions to the log function. The problem with this approach is

the lack of generality - each new equation to be used requires its own special quadrature scheme.

3.8.2 Special solutions

Another approach, particularly useful if Cauchy principal values are to be found (see Section 5.8) is

to use special solutions of the governing equation to find one or more of the more difficult integrals.

For example u = x is a solution to Laplaces’ equation (assuming the boundary conditions

are set correctly). Thus if one sets both u and q in Equation (3.27) at every node according to

the solution u = x, one can then use this to solve for some entry in either the A or B matrix

(typically the diagonal entry since this is the most important and difficult to find). Further solutions

to Laplaces equation (e.g., u = x2 − y2) can be used to find the other matrix entries (or just used

to check the accuracy of the matrices).
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3.9 The Boundary Element Method Applied to other Elliptic

PDEs

Helmholtz, modified Helmholtz (CMISS example) Poisson Equation (domain integral and MRM,

DRM, Monte-carlo integration.

3.10 Solution of Matrix Equations

The standard BEM approach results in a system of equations of the form Cx = f (refer (3.28)).

As mentioned above the matrix C is generally well conditioned, fully populated and nonsymmet-

ric. For small problems, direct solution methods, based on LU factorisations, can be used. As the

problem size increases, the time taken for the matrix solution begins to dominate the matrix assem-

bly stage. This usually occurs when there is between 500 and 1000 degrees of freedom, although it

is very dependent on the implementation of the BE method. The current technique of favour in the

BE community for solution of large BEM matrix equations is a preconditioned Conjugate Gradient

solver. Preconditioners are generally problem dependent - what works well for one problem may

not be so good for another problem. The conjugate gradient technique is generally regarded as a

solution technique for (sparse) symmetric matrix equations.

3.11 Coupling the FE and BE techniques

There are undoubtably situations which favour FEM over BEM and vice versa. Often one problem

can give rise to a model favouring one method in one region and the other method in another

region, e.g., in a detailed analysis of stresses around a foundation one needs FEM close to the

foundation to handle nonlinearities, but to handle the semi-infinite domain (well removed from the

foundation), BEM is better. There has been a lot of research on coupling FE and BE procedures -

we will only talk about the basic ideas and use Laplace’s Equation to illustrate this. There are at

least two possible methods.

1. Treat the BEM region as a finite element and combine with FEM

2. Treat the FEM region as an equivalent boundary element and combine with BEM

Note that these are essentially equivalent - the use of one or the other depends on the problem,

in the sense of which part is more dominant FEM or BEM)

Consider the region shown in Figure 3.7, where

Ωf = FEM region

ΩB = BEM region

Γf = FEM boundary

ΓB = BEM boundary

ΓI = interface boundary

The BEM matrices for ΩB can be written as
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ΓB

Γf

Ωf

ΓI

ΩB

FIGURE 3.7: Coupled finite element/boundary element solution domain.

Au = Bq (3.36)

where u is a vector of the nodal values of u and q is a vector of the nodal values of
∂u

∂n
The FEM matrices for ΩF can be written as

Ku = f (3.37)

where K is the stiffness matrix and f is the load vector.

To apply method 1 (i.e., treating BEM as an equivalent FEM region) we get (from Equa-

tion (3.36))

B−1Au = q (3.38)

If we recall what the elements of f in Equation (3.37) contained, then we can convert q in

Equation (3.38) to an equivalent load vector by weighting the nodal values of q by the appropriate

basis functions, producing a matrix M i.e., fB = Mq

Therefore Equation (3.38) becomes

M
(
B−1A

)
u = Mq = fB

i.e.,

KBu = fB

where KB = MB−1A

an equivalent stiffness matrix obtain from BEM.

Therefore we can assemble this together with original FEM matrix to produce an FEM-type

system for the entire region ΩB .

Notes:

1. KB is in general not symmetric and not sparse. This means that different matrix equation

solvers must be used for solving the new combined FEM-type system (most solvers in FEM

codes assume sparse and symmetric). Attempts have been made to “symmetricise” the KB



3.12 OTHER BEM TECHNIQUES 63

matrix - of doubtful quality. (e.g., replace KB by
1

2

(
KB −KT

B

)
- often yields inaccurate

results).

2. On ΓI nodal values of u and q are unknown. One must make use of the following

uI
B = uI

F (u is continuous)

∂uI
B

∂nB

= −∂uI
F

∂nF

(q is continuous, but ΓB = −ΓF )

To apply method 2 (i.e., to treat the FEM region as an equivalent BEM region) we firstly note

that, as before, f = Mq. Applying this to (3.37) yields Ku = Mq an equivalent BEM system.

This can be assembled into the existing BEM system (using compatability conditions) and use

existing BEM matrix solvers.

Notes:

1. This approach does not require any matrix inversion and is hence easier (cheaper) to imple-

ment

2. Existing BEM solvers will not assume symmetric or sparse matrices therefore no new matrix

solvers to be implemented

3.12 Other BEM techniques

What we have mentioned to date is the so-called singular (direct) BEM. Given a BIE there are

other ways of solving the Equation although these are not so widely used.

3.12.1 Trefftz method

Trefftz was the first person to perform a BEM calculation (in 1917 - calculated the value (numer-

ical) of the contraction coefficient of a round jet issuing from an infinite tank - a nonlinear free

surface problem). This method basically uses a “complete” set of solutions instead of a Funda-

mental Solution. e.g., Consider Laplaces Equation in a (bounded) domain Ω

weighted residuals ⇒
∫

∂Ω

ω
∂u

∂n
dΓ =

∫

∂Ω

u
∂ω

∂n
dΓ if ∇2

ω = 0

The procedure is to express u as a series of (complete) functions satisfying Laplace’s equation

with coefficients which need to be numerically determined through utilisation of the boundary

conditions.

Notes:

1. Doesn’t introduce singular functions so integrals are easy to evaluate

2. Must find a (complete) set of functions (If you just use usual approximations for u matrix

system is not diagonally dominant so not so good)

3. Method is not so popular - Green’s functions more widely available that complete systems
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3.12.2 Regular BEM

Consider the BIE for Laplace’s equation

c (P )u (P ) +

∫

∂Ω

u
∂ω

∂n
dΓ =

∫

∂Ω

∂u

∂n
ω dΓ

with ω = − 1

2π
log r

The usual procedure is to put point P at each solution variable node - creating an equation for each

node. This leads to singular integrands.

Another possibility is to put point P outside of the domain Ω - this yields

∫

∂Ω

u
∂ωp

∂n
dΓ =

∫

∂Ω

∂u

∂n p
dΓ

Following discretisation as before gives

N∑

j=1

∑

α

ujα

∫

Γj

ϕα

∂ωp

∂n
dΓ =

N∑

j=1

∑

α

qjα

∫

Γj

ϕαωp dΓ

- an equation involving u and q at each surface node.

By placing the point P (the singular point) at other distinct points outside Ω one can generate

as many equations as there are unknowns (or more if required).

Notes:

1. This method does not involve singular integrands, so that integrals are inexpensive to calcu-

late.

2. There is considerable choice for the location of the point P . Often the set of Equations

generated are ill-conditioned unless P chosen carefully. In practise P is chosen along the unit

outward normal of the surface at each solution variable node. The distance along each node

is often found by experimentation - various research papers suggesting “ideal” distances

(Patterson & Shiekh).

3. This method is not very popular.

4. The idea of placing the singularity point P away from the solution variable node is often of

use in other situations e.g., Exterior Acoustic Problems. For an acoustic problem (governed

by Helmholtz Equation ∇2
u+k2u = 0) in an unbounded region the system of Equations pro-

duced by the usual (singular) BEM approach is singular for certain “fictitious” frequencies

(i.e., certain values of k). To overcome this further equations are generated (by placing the

singular point P at various locations outside Ω). The system of equations are then overde-

termined and are solved in a least squares sense.
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H = e−sz

∇2H = s2H

z

x

FIGURE 3.8: A problem exhibiting symmetry.

3.13 Symmetry

Consider the problem given in Figure 3.8 (the domain is outside the circle). Both the boundary

conditions and the governing Equation exhibit symmetry about the vertical axis. i.e., putting x to

−x makes no difference to the problem formulation. Thus the solution H (x, z) has the property

that H (x, z) = H (−x, z) ∀x. This behaviour can be found in many problems and we can make

use of this as follows. The Boundary Element Equation is (with N = 2M (i.e., N is even) constant

elements)

1

2
ui +

N∑

j=1

uj

∫

Γj

∂ωi

∂n
dΓ =

N∑

j=1

qj

∫

Γj

ωi dΓ i = 1, . . . , N (3.39)

We have N Equations and N unknowns (allowing for the boundary conditions). From symmetry

we know that (refer to Figure 3.9).

ui = un+1−i i = 1, . . . ,M (3.40)

So we can write

1

2
ui +

M∑

j=1

uj







∫

Γj

∂ωi

∂n
dΓ +

∫

ΓN+1−j

∂ωi

∂n
dΓ







=

M∑

j=1

qj







∫

Γj

ωi dΓ +

∫

ΓN+1−j

ωi dΓ







(3.41)

for nodes i = 1, . . . ,M . (The Equations for nodes i = M+1, . . . , N are the same as the Equations

for nodes i = 1, . . . ,M). The above M Equations have only M unknowns.
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ΓN+1−i Γi

Γ1ΓN

z

x

FIGURE 3.9: Illustration of a symmetric mesh.

If we define

aij =

∫

Γj

∂ωi

∂n
dΓ +

∫

ΓN+1−j

∂ωi

∂n
dΓ (3.42)

bij =

∫

Γj

ωi dΓ +

∫

ΓN+1−j

ω∗
i dΓ (3.43)

then we can write Equation (3.41) as

1

2
ui +

M∑

j=1

aijuj =

M∑

j=1

bijqj i = 1, . . . ,M (3.44)

and solve as before. (This procedure has halved the number of unknowns.)

Note: Since i = 1, . . . ,M this means that the integrals over the elements ΓM+1 to ΓN will never

contain a singularity arising from the fundamental solution, except possibly on the axis of symme-

try if linear or higher order elements are used.

An alternative approach to the method above arises from the implied no flux across the z axis.

This approach ignores the negative x axis and considers the half plane problem shown.

However now the surface to be discretised extends to infinity in the positive and negative z
directions and the resulting systems of equations produced is much larger.

Further examples of how symmetry can be used (e.g., radial symmetry) are given in the next

section.
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Γ

Γ

Ω

z

r

FIGURE 3.10: Illustration of surface Γ for an axisymmetric problem.

3.14 Axisymmetric Problems

If a three-dimensional problem exhibits radial or axial symmetry (i.e., u (r, θ1, z) = u (r, θ2, z)) it

is possible to reduce the two-dimensional integrals appearing in the standard boundary Equation

to one-dimensional line integrals and thus substantially reduce the amount of computer time that

would otherwise be required to solve the fully three-dimensional problem. The first step in such a

procedure is to write the standard boundary integral equation in terms of cylindrical polars (r, θ, z)
i.e.,

c (P )u (P ) +

∫

Γ

u





2π∫

0

∂ωp

∂n
dθq



 rq dΓ =

∫

Γ

q





2π∫

0

ωp dθq



 rq dΓ (3.45)

where (rp, θp, zp) and (rq, θq, zq) are the polar coordinates of P and Q respectively, and Γ is the

intersection of Γ and θ = 0 semi-plane (Refer Figure 3.10). (n.b. Q is a point on the surface being

integrated over.)

For three-dimensional problems governed by Laplace’s equation

ωp =
1

4πr

where rp is the distance from P to Q. From Figure 3.11

r21 = r2p + r2q − 2rprq cos (θp − θq)

r2 =
√

r21 + r22

r =
√

r2p + r2q − 2rprq cos (θp − θq) + (zp − zq)
2

=

√

a− b cos (θp − θq) + (zp − zq)
2

(3.46)
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rp
r1

r2

rq

r

z

r

P

Q

FIGURE 3.11: The distance from the source point (P ) to the point of interest (Q) in terms of

cylindrical polar coordinates.

We define

ωp =
1

4π

2π∫

0

ωp dθq ≡
K (m)

π
√
a+ b

where m =
2b

a + b
(3.47)

and K (m) is the complete elliptic integral of the first kind.

ωp is called the axisymmetric fundamental solution and is the Green’s function for a ring source

as opposed to a point source. i.e., ωp is a solution of

∇2
ω + δ (r − rp) = 0 (3.48)

instead of

∇2
ω + δp = 0 (3.49)

where δp is the dirac delta centered at the point P and δ (r − rP ) is the dirac delta centered on the

ring r = rp.
Unlike the two- and three-dimensional cases, the axisymmetric fundamental solution cannot be

written as simply a function of the distance between two points P and Q, but it also depends upon

the distance of these points to the axis of revolution.

We also define

q∗p =
1

4π

2π∫

0

∂ωp

∂n
dθq ≡

∂ωp

∂n
(3.50)

For Laplace’s equation Equation (3.50) becomes

q∗p =
1

π
√
a+ b

[
1

2rq

{
r2p − r2q + (zp − zq)

a− b
E (m)−K (m)

}

nr (Q) +
zp − zq
a− b

E (m)nz (Q)

]

(3.51)
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Γ

ΩR

x0
Γ

R

FIGURE 3.12: Derivation of infinite domain boundary integral equations.

where E (m) is the complete elliptic integral of the second kind.

Using Equation (3.47) and Equation (3.50) we can write Equation (3.45) as

c (P )u (P ) +

∫

Γ

u
∂ωp

∂n
dΓ =

∫

Γ

qωp dΓ (3.52)

and the solution procedure for this Equation follows the same lines as the solution procedure given

previously for the two-dimensional version of boundary element method.

3.15 Infinite Regions

The boundary integral equations we have been using have been derived assuming the domain Ω
is bounded (although this was never stated). However all concepts presented thus far are also

valid for infinite regular (i.e., nice) regions provided the solution and its normal derivative behave

appropriately as Γ → ∞.

Consider the problem of solving ∇2
u = 0 outside some surface Γ.

Γ is the centre of a circle (or sphere in three dimensions) of radius centred at some point x0 on

Γ and surrounding Γ (see Figure 3.12). The boundary integral equations for the bounded domain

ΩR can be written as

c (P )u (P ) +

∫

Γ

u
∂ωP

∂n
dΓ +

∫

Γ

u
∂ωP

∂n
dΓ =

∫

Γ

qωP dΓ +

∫

Γ

qωP dΓ (3.53)
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If we let the radius R → ∞ Equation (3.53) will only be valid for the points on Γ if

lim
R→∞

∫

Γ

(

u
∂ωP

∂n
− qωP

)

dΓ = 0 (3.54)

If this is satisfied, the boundary integral Equation for Ω will be as expected i.e.,

c (P )u (P ) +

∫

Γ

u
∂ωP

∂n
dΓ =

∫

Γ

qωP dΓ (3.55)

For three-dimensional problems with ω∗ =
1

4πr

dΓ = |J | dθdφ where |J | = O
(
R2
)

ω∗ = O
(
R−1

)

∂ω∗

∂n
= O

(
R−2

)

where |J | is the Jacobian and O () represents the asymptotic behaviour of the function as R →
∞. In this case Equation (3.53) will be satisfied if u behaves at most as O (R−1) so that q =
O (R−2). These are the regularity conditions at infinity and these ensure that each term in the

integral Equation (3.53) behaves at most as O (R−1) (i.e., each term will → 0 as R → ∞)

For two-dimensional problems with ω∗ = O (log (R)) we require u to behave as log (R) so that

q = O (R−1). For almost all well posed infinite domain problems the solution behaves appropri-

ately at infinity.
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3.16 Appendix: Common Fundamental Solutions

3.16.1 Two-Dimensional equations

Here r =
√

(x2
1 + x2

2).

Laplace Equation
∂2u∗

∂x1
2
+

∂2u∗

∂x2
2
+ δ0 = 0

Solution u∗ =
1

2π
log

(
1

r

)

Helmholtz Equation
∂2u∗

∂x1
2
+

∂2u∗

∂x2
2
+ λ2u∗ + δ0 = 0

Solution u∗ =
1

4i
H

(2)
0 (λr)

where H is the Hankel funtion.

Wave Equation c2
(
∂2u∗

∂x1
2
+

∂2u∗

∂x2
2

)

− ∂2u∗

∂t2
+ δ0 (t) = 0

where c is the wave speed.

Solution u∗ = − H (ct− r)

2πc (c2t2 − r2)

Diffusion Equation
∂2u∗

∂x1
2
+

∂2u∗

∂x2
2
− 1

k

∂u∗

∂t
= 0

where k is the diffusivity.

Solution u∗ = − 1

(4πkt)
3
2

exp

(

− r2

4kt

)

Navier’s Equation
∂σ∗

jk

∂xj

+ δl = 0 for a point load in direction l.

Solution p∗i = p∗jiej

p∗ji = − 1

8π (1− ν2) r2(
∂r

∂n
[(1− 2ν) δij + 3r,ir,j] + (1− 2ν) (njr,i − nir,j)

)

ej

for a traction in direction k where ν is Poisson’s ratio.

3.16.2 Three-Dimensional equations

Here r =
√

(x2
1 + x2

2 + x2
3).
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Laplace Equation
∂2u∗

∂x1
2
+

∂2u∗

∂x2
2
+

∂2u∗

∂x3
2
+ δ0 = 0

Solution u∗ =
1

4πr

Helmholtz Equation
∂2u∗

∂x1
2
+

∂2u∗

∂x2
2
+

∂2u∗

∂x3
2
+ λ2u∗ + δ0 = 0

Solution u∗ =
1

4πr
exp (−iλr)

Wave Equation c2
(
∂2u∗

∂x1
2
+

∂2u∗

∂x2
2
+

∂2u∗

∂x3
2

)

− ∂2u∗

∂t2
+ δt = 0

where c is the wave speed.

Solution u∗ =
δ
(

t− r

c

)

4πr

Navier’s Equation
∂σ∗

jk

∂xj

+ δl = 0 for a isotropic homogenenous Kelvin

solution for a point load in direction l.
Solution u∗

k = u∗
lkel

u∗
lk =

1

16πG (1− ν)

(
3− 4ν

r
δlk +

∂r

∂x1

∂r

∂x2

)

for a displacement in direction k where ν is Poisson’s

ratio and G is the shear modulus.

3.16.3 Axisymmetric problems

Laplace For u∗ see Equation (3.47) and for q∗ see Equation (3.51)

3.17 CMISS Examples

1. 2D steady-state heat conduction inside an annulus To determine the steady-state heat con-

duction inside an annulus run the CMISS example 324.

2. 3D steady-state heat conduction inside a sphere. To determine the steady-state heat conduc-

tion inside a sphere run the CMISS example 328.

3. CMISS comparison of 2-D FEM and BEM calculations To determine the CMISS comparison

of 2-D FEM and BEM calculations run examples 324 and 312.

4. CMISS biopotential problems C4 and C5.



Chapter 4

Transient Heat Conduction

4.1 Introduction

In the previous discussion of steady state boundary value problems the principal advantage of the

finite element method over the finite difference method has been the greater ease with which com-

plex boundary shapes can be modelled. In time-dependent problems the solution proceeds from

an initial solution at t = 0 and it is almost always convenient to calculate each new solution at a

constant time (t > 0) throughout the entire spatial domain Ω. There is, therefore, no need to use

the greater flexibility (and cost) of finite elements to subdivide the time domain: finite difference

approximations of the time derivatives are usually preferred. Finite difference techniques are intro-

duced in Section 4.2 to solve the transient one dimensional heat equation. A combination of finite

elements for the spatial domain and finite differences for the time domain is used in Section 4.3 to

solve the transient advection-diffusion equation - a slight generalization of the heat equation.

4.2 Finite Differences

4.2.1 Explicit Transient Finite Differences

Consider the transient one-dimensional heat equation

∂u

∂t
= D

∂2u

∂x2
, (0 < x < L, t > 0) (4.1)

where D is the conductivity and u = u (x, t) is the temperature, subject to the boundary conditions

u (0, t) = u0 and u (L, t) = u1 and the initial conditions u (x, 0) = 0. A finite difference approxi-

mation of this equation is obtained by defining a grid with spacing ∆x in the x-domain and ∆t in

the time domain, as shown in Figure 4.1.

Grid points are labelled by the indices i = 0, 1, . . . , I (for the x-direction) and n = 0, 1, . . . , N
(for the t-direction). The temperature at the grid point (i, n) is therefore labelled as

u (x, t) = u (i∆x, n∆t) = un
i . (4.2)

Finite difference equations are derived by writing Taylor Series expansions for un
i+1, u

n
i−1u

n+1
i
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about the grid point (i, n)

un
i+1 = un

i +∆x.

(
∂u

∂x

)n

i

+
1

2
∆x2.

(
∂2u

∂x2

)n

i

+
1

6
∆x3.

(
∂3u

∂x3

)n

i

+O
(
∆x4

)
(4.3)

un
i−1 = un

i −∆x.

(
∂u

∂x

)n

i

+
1

2
∆x2.

(
∂2u

∂x2

)n

i

− 1

6
∆x3.

(
∂3u

∂x3

)n

i

+O
(
∆x4

)
(4.4)

un+1
i = un

i +∆t.

(
∂u

∂t

)n

i

+O
(
∆t2
)

(4.5)

where O (∆x4) and O (∆t2) represent all the remaining terms in the Taylor Series expansions.

Adding Equations (4.3) and (4.4) gives

un
i+1 + un

i−1 = 2un
i +∆x2.

(
∂2u

∂x2

)n

i

+O
(
∆x4

)

or (
∂2u

∂x2

)n

i

=
un
i+1 − 2un

i + un
i−1

∆x2
+O

(
∆x2

)
, (4.6)

which is a “central difference” approximation of the second order spatial derivative.

Rearranging Equation (4.5) gives a “difference” approximation of the first order time derivative

(
∂u

∂t

)n

i

=
un+1
i − un

i

∆t
+O (∆t) . (4.7)

Substituting Equation (4.6) and Equation (4.7) into the transient heat equation Equation (4.1)

gives the finite difference approximation

un+1
i − un

i

∆t
+O (∆t) = D

un
i+1 − 2un

i + un
i−1

∆x2
+O

(
∆x2

)

which is rearranged to give an expression for un+1
i in terms of the values of u at the nth time step

un+1
i = un

i +D
∆t

∆x2

(
un
i+1 − 2un

i + un
i−1

)
+O

(
∆t2,∆x2

)
. (4.8)

Given the initial values of un
i at n = 0 (i.e., t = 0), the values of un+1

i for the next time step

are found from Equation (4.8) with i = 1, 2, . . . , I . Applying Equation (4.8) iteratively for time

steps n = 1, 2, . . . etc. yields the time dependent temperatures at the grid points (see Figure 4.1).

This is an explicit finite difference formula because the value of un
i depends only on the values of

un
i (i = 1, 2, . . . , I) at the previous time step and not on the neighbouring terms un+1

i+1 and un+1
i−1 at

the latest time step. The accuracy of the solution depends on the chosen values of ∆x and ∆t and

in fact the stability of the scheme depends on these satisfying the Courant condition:

D
∆t

∆x2
≤ 1

2
. (4.9)
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FIGURE 4.1: A finite difference grid for the solution of the transient 1D heat equation. The

equation is centred at grid point (i, n) shown by the O. The lightly shaded region shows where the

solution is known at time step n. With central differences in x and a forward difference in t an

explicit finite difference formula gives the solution at time step n+ 1 explicitly in terms of the

solution at the three points below it at step n, as indicated by the dark shading.

4.2.2 Von Neumann Stability Analysis

The concept behind the Von Neumann analysis is that all Fourier components decay as time ad-

vances or as they are processed by an iterative solver. Considering Equation (4.8), we can rearrange

this to be of the form,

un+1
i = Υun

i+1 + (1− 2Υ)un
i +Υun

i−1 (4.10)

where Υ = D
∆t

∆x2
. By subsituting the general Fourier component un

j = An
ke

i(πkj∆x

L ), we obtain,

An+1
k ei(

πkj∆x

L ) = An
k

[

Υei(
πk(j+1)∆x

L ) + (1− 2Υ) ei(
πkj∆x

L ) + Υei(
πk(j−1)∆x

L )
]

(4.11)

If divide Equation (4.11) by, An
ke

i(πkj∆x

L ) we obtain (no sum on k),

An+1
k

An
k

= (1− 2Υ) + Υei(
πk∆x

L ) + Υe−i(πk∆x
L )

= 1− 2Υ + 2Υcos

(
πk∆x

L

)

using cos(x) =
eix + e−ix

2

= 1− 4Υsin2

(
πk∆x

2L

)

using cos(2x) = 1− 2sin2(x)

(4.12)

Equation (4.12) predicts the growth of any component (specified by k) admitted by the system.

If all components are to decay,

∣
∣
∣
∣

An+1
k

An
k

∣
∣
∣
∣
≤ 1 for stability (no sum on k) (4.13)
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Since the sin2 term in Equation (4.12) is always between 0 and 1, we effectively have the stablity

criteria that

1− 4Υ ≤ 1 and 1− 4Υ ≥ −1 (4.14)

The first inequality is trivially satisfied, since Υ ≥ 0 for positive values of ∆t and D, and the

second condition will always hold if

Υ = D
∆t

∆x2
≤ 1

2
(4.15)

Thus, to ensure stability, the time step should be chosen such that

∆t ≤ ∆x2

2D
The Courant condition (4.16)

4.2.3 Higher Order Approximations

An improvement in accuracy and stability can be obtained by using a higher order approximation

for the time derivative. For example, if a central difference approximation is used for
∂u

∂t
by

centering the equation at (i∆x,
(
n+ 1

2

)
∆t) rather than (i∆x, n∆t) we get

(
∂u

∂t

)n+ 1
2

i

=
un+1
i − un

i

∆t
+O

(
∆t2
)

(4.17)

in place of Equation (4.7) and Equation (4.1) is approximated with the “Crank-Nicolson”formula

un+1
i − un

i

∆t
= D

{

1

2

(
∂2u

∂x2

)n+1

i

+
1

2

(
∂2u

∂x2

)n

i

}

(4.18)

in which the spatial second derivative term is weighted by 1
2

at the old time step n and by 1
2

at the

new time step n + 1. Notice that the finite difference time derivative has not changed - only the

time position at which it is centred. The price paid for the better accuracy (for a given ∆t) and

unconditional stability (i.e., stable for any ∆t) is that Equation (4.18) is an implicit scheme - the

equations for the new time step are now coupled in that un+1
i depends on the neighbouring terms

un+1
i+1 and un+1

i−1 . Thus each new time step requires the solution of a system of coupled equations.

A generalization of (4.18) is

un+1
i − un

i

∆t
= D

{

θ

(
∂2u

∂x2
i

)n+1

+ (1− θ)

(
∂2u

∂x2
i

)n
}

(4.19)

in which the spatial second derivative of Equation (4.1) has been weighted by θ at the new time step

and by (1− θ) at the old time step. The original explicit forward difference scheme Equation (4.8)

is recovered when θ = 0 and the implicit central difference (Crank-Nicolson) scheme (4.19) when

θ = 1
2
. An implicit backward difference scheme is obtained when θ = 1.

In the following section the transient heat equation is approximated for numerical analysis

by using finite differences in time and finite elements in space. We also generalize the partial
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FIGURE 4.2: An implicit finite difference scheme based on central differences in t, as well as x,

which tie together the 6 points shown by x. The equation is centred at the point (i, n +
1

2
) shown

by the O. The lightly shaded region shows where the solution is known at time step n. The dark

shading shows the region of the coupled equations.

differential equation to include an advection term and a source term.

4.3 The Transient Advection-Diffusion Equation

Consider a linear parabolic equation

∂u

∂t
+ v · ∇u = D∇2

u + f (4.20)

where u is a scalar variable (e.g., the advection-diffusion equation, where u is concentration or

temperature; v · ∇u then represents advective transport by a velocity field v, D is the diffusivity

and f is source term. The ratio of advective to diffusive transport is characterised by the Peclet

number V L/D where V = ‖v‖2 and L is a characteristic length).

Applying the Galerkin weighted residual method to Equation (4.20) with weight ω gives

∫

Ω

(
∂u

∂t
+ v · ∇u−D∇2

u − f

)

ω dΩ = 0

or
∫

Ω

[(
∂u

∂t
+ v · ∇u

)

ω +D∇u · ∇ω

]

dΩ =

∫

Ω

fω dΩ +D

∫

∂Ω

∂u

∂n
ω dΓ (4.21)

where
∂

∂n
is the normal derivative to the boundary ∂Ω.

Putting u = ϕnun and ω = ϕm and summing the element contributions to the global equations,
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Equation (4.21) can be represented by a system of first order ordinary differential equations,

M
du

dt
+Ku = Ku∞ (4.22)

where M is the global mass matrix, K the global stiffness matrix and u a vector of global nodal

unknowns with steady state values (t → ∞) u∞ . The element contributions to M and K are

given by

Mmne
=

1∫

0

ϕmϕnJ dξ (4.23)

and

Kmne
=

1∫

0

D
∂ϕm

∂ξi

∂ϕn

∂ξj
· ∂ξi
∂xk

∂ξj
∂xk

J dξ +

1∫

0

vjϕm

∂ϕn

∂ξi

∂ξi
∂xj

J dξ (4.24)

If the time domain is now discretized (t = n∆t, n = 0, 1, 2, . . .) Equation (4.22) can be re-

placed by

M
un+1 − un

∆t
+K

[
θun+1 + (1− θ)un

]
= Ku∞ 0 ≤ θ ≤ 1 (4.25)

where θ is a weighting factor discussed in Section 4.2. Note that for θ =
1

2
the method is known

as the Crank-Nicolson-Galerkin method and errors arising from the time domain discretization are

O (∆t2). Rearranging Equation (4.25) as

[M + θ∆tK ]un+1 = [M − (1− θ)∆tK]un +∆tKu∞ (4.26)

gives a set of linear algebraic equations to solve at the new time step (n+ 1)∆t from the known

solution un at the previous time step n∆t.
The stability of the above scheme can be examined by expanding u (assumed to be smoothly

continuous in time) in terms of the eigenvectors si (with associated eigenvalues λi) of the matrix

A = M−1K. Writing the initial conditions u(0) =
∑

i

aisi and steady state solution u∞ =

∑

i

bisi , the set of ordinary differential equations Equation (4.22) has solution

u =
∑

i

[
bi + (ai − bi) e

−λit
]
si (4.27)

The time-difference scheme Equation (4.26) on the other hand, with u now replaced by a set

of discrete values un at each time step n∆t, can be written as the recursion formula

[I + θ∆tA]un+1 = [I − (1− θ)∆tA]un +∆tAu∞ (4.28)

with solution

u =
∑

i

{

bi + (ai − bi)

[
1−∆t (1− θ) λi

1 + ∆tθλi

]n}

si (4.29)
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(You can verify that Equation (4.27) and Equation (4.29) are indeed the solutions of Equation (4.22)

and Equation (4.25), respectively, by substituting and using Asi = λisi.)

Comparing Equation (4.27) and Equation (4.29) shows that replacing the ordinary differential

equations (4.22) by the finite difference approximation Equation (4.25) is equivalent to replacing

the exponential e−λit in Equation (4.27) by the approximation

e−λit ∼
[
1−∆t (1− θ)λi

1 + ∆tθλi

]n

(4.30)

or, with t = n∆t,

e−λit ∼ 1−∆t (1− θ) λi

1 + ∆tθλi

= 1− ∆tλi

1 + ∆tθλi

(4.31)

The stability of the numerical time integration scheme can now be investigated by examining

the behaviour of this approximation to the exponential. For stability we require

−1 ≤ 1− ∆tλi

1 + ∆tθλi

≤ 1 (4.32)

since this term appears in Equation (4.29) raised to the power n. The right hand inequality in

Equation (4.32) is trivially satisfied, since ∆t, λi and θ are all positive, and the left hand inequality

gives
∆tλi

1 + ∆tθλi

≤ 2 or ∆tλi (1− 2θ) ≤ 2 (4.33)

A consequence of Equation (4.33) is that the scheme is unconditionally stable if 1
2
≤ θ ≤ 1.

For θ < 1
2

the stability criterion is

∆tλi <
2

1− 2θ
(4.34)

If the exponential approximation given by Equation (4.31) is negative for any λi the solution

will contain components which change sign with each time step n. This oscillatory noise can be

avoided by choosing

∆t <
1

(1− θ)λmax

, (4.35)

where λmax is the largest eigenvalue in the matrix A, but in practice this imposes a limit which

is too severe for ∆t and a small amount of oscillatory noise, associated with the high frequency

vibration modes of the system, is tolerated. Alternatively the oscillatory noise can be filtered out

by averaging.

These theoretical results are explored numerically with a Crank-Nicolson-Galerkin scheme

(θ = 1
2
) in Figure 4.3, where the one-dimensional diffusion equation

∂u

∂t
= D

∂2u

∂x2
on 0 ≤ x ≤ 1

subject to initial conditions u (x, 0) = 0
and boundary conditions u (0, t) = 0, u (1, t) = 1

(4.36)
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is solved for various time increments (∆t) and element lengths (∆x) for both linear and cubic

Hermite elements.

Decreasing ∆x from 0.25 to 0.1 with linear elements produces more oscillation because the

system has more degrees of freedom and leads to greater oscillation. At a sufficiently small ∆t the

oscillations are negligible (bottom right, Figure 4.3). With this value of ∆t (0.01 s) the numerical

results agree well with the exact solution (top, Figure 4.3) given by

u (x, t) = x+
2

π

∞∑

n=1

(−1)n

n
e−n2π2t sin (nπx) (4.37)

4.4 Mass lumping

A technique known as mass lumping is sometimes used in which the mass matrix M is replaced

by a diagonal matrix having diagonal terms equal to the row sums. For example, consider the mass

matrix (Equation (4.23)) for a bilinear element (see Figure 1.9 and Equation (1.6)).

M11 =

∫∫

(1− ξ1)
2 (1− ξ2)

2ξ1ξ2 = −(1− ξ1)
3

3

∣
∣
∣
∣
∣
0

1 −(1− ξ2)
3

3

∣
∣
∣
∣
∣
0

1 =
1

3
· 1
3
=

1

9

M22 =

∫∫

ξ21 (1− ξ2)
2ξ1ξ2 =

1

3
· 1
3
=

1

9
and similarly M33 and M44.

M12 =

∫∫

ξ1 (1− ξ1) (1− ξ1)
2ξ1ξ2 =

(

−1

2
− 1

3

)

· 1
3
=

1

18

M13 =

∫∫

(1− ξ1)
2 ξ2 (1− ξ2)ξ1ξ2 =

1

18
and similarly M34 and M24.

M14 =

∫∫

ξ1 (1− ξ1) ξ2 (1− ξ2)ξ1ξ2 =
1

36
and similarly M23.

therefore M =







1
9

1
18

1
18

1
36

1
18

1
9

1
36

1
18

1
18

1
136

1
9

1
18

1
36

1
18

1
18

1
9







mass lumping−→







1
4

0 0 0
0 1

4
0 0

0 0 1
4

0
0 0 0 1

4







The element mass is effectively lumped at the element vertices. Such a scheme has computa-

tional advantages when θ = 0 in Equation (4.26) because each component of the vector un+1 is

obtained directly without the need to solve a set of coupled equations. This explicit time integration

scheme, however, is only conditionally stable (see (4.34)) and suffers from phase lag errors - see

below. For evenly spaced elements the finite element scheme with mass lumping is equivalent to

finite differences with central spatial differences.

In Figure 4.4, the finite element and finite differences (lumped f.e. mass matrix) solutions of the

one-dimensional advection-diffusion equation (4.20) with V = 5 m s−1, D = 0.1 m2s−1, f = 0
are compared for the propogation and dispersion of an initial unit mass pulse at x = 0. The length

of the solution domain is sufficient to avoid reflected end effects.
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t = ∞
t = 0.1

t = 0.02

t = 0.05

u(x, t)

1.0

xx Linear CNG with ∆x = 0.1,∆t = 0.01

FIGURE 4.3: Analytical and numerical solutions of the transient 1D heat equation showing the

effects of element size ∆x and time step size ∆t. The top graph shows the exact and approximate

solutions as functions of x at various times. The lower graphs show the solution through time at the

specified x positions and with various choices of ∆x and ∆t as indicated.
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x

x x

x x

x x
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x
x
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x
x

x
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o
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o
o

o
o

o
o

o

o o Finite difference solution

Finite element solutionxx

Exact solution

t = 0.01 s

t = 0.05 s

t = 0.2 s

t = 0.4 s

V = 5 m s−1

x

D = 0.1 m2 s−1

u (x, t)

FIGURE 4.4: Advection-diffusion of a unit mass pulse. The finite element solutions (at t=0.01 s,
0.05 s, 0.2 s and 0.4 s) and finite difference solutions (at t=0.4 s only) are compared with the exact

solution. ∆x= 0.1, ∆t = 0.001 s for 0< t <0.01 s and ∆t = 0.01 for t ≥ 0.01 s.

The exact solution is a Gaussian distribution whose variance increases with time:

u (x, t) =
M√
4π∆t

e
−
(x− V t)2

4Dt (4.38)

The finite element solution, using the Crank-Nicolson-Galerkin technique, shows excellent

amplitude and phase characteristics when compared with the exact solution. The finite difference,

or lumped mass, solution also using centered time differences, reproduces the amplitude of the

pulse very well but shows a slight phase lag.

4.5 CMISS Examples

1. To solve for the transient heat flow in a plate run CMISS example 331

2. To investigate the stability of time integration schemes run CMISS examples 3321 and 3322.



Chapter 5

Linear Elasticity

5.1 Introduction

To analyse the stress in various elastic bodies we calculate the strain energy of the body in terms of

nodal displacements and then minimize the strain energy with respect to these parameters - a tech-

nique known as the Rayleigh-Ritz. In fact, as we will show later, this leads to the same algebraic

equations as would be obtained by the Galerkin method (now equivalent to virtual work) but the

physical assumptions made (in neglecting certain strain energy terms) are exposed more clearly in

the Rayleigh-Ritz method. We will first consider one-dimensional truss and beam elements, then

two-dimensional plane stress and plane strain elements, and finally three-dimensional elasticity.

In all cases the steps are:

1. Evaluate the components of strain in terms of nodal displacements,

2. Evaluate the components of stress from strain using the elastic material constants,

3. Evaluate the strain energy for each element by integrating the products of stress and strain

components over the element volume,

4. Evaluate the potential energy from the sum of total strain energy for all elements together

with the work done by applied boundary forces,

5. Apply the boundary conditions, e.g., by fixing nodal displacements,

6. Minimize the potential energy with respect to the unconstrained nodal displacements,

7. Solve the resulting system of equations for the unconstrained nodal displacements,

8. Evaluate the stresses and strains using the nodal displacements and element basis functions,

9. Evaluate the boundary reaction forces (or moments) at the nodes where displacement is

constrained.
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5.2 Truss Elements

Consider the one-dimensional truss of undeformed length L in Figure 3.1 with end points (0, 0)
and (x, y) and making an angle θ with the x-axis. Under the action of forces in the x- and y-

directions the right hand end of the truss displaces by u in the x-direction and v in the y-direction,

relative to the left hand end.

v

l

θ

L

u(X, Y )

(X + u, Y + v)

x

y

FIGURE 5.1: A truss of initial length L is stretched to a new length l. Displacements of the right

hand end relative to the left hand end are u and v in the x- and y- directions, respectively.

The new length is l with axial strain

e =
l

L
− 1 =

√

(X + u)2 + (Y + v)2

√
X2 + Y 2

− 1

=

√

L2 + 2 (Xu+ Y v) + u2 + v2

L
− 1

=

√

1 + 2
(

cos θ.
u

L
+ sin θ.

v

L

)

+
u2 + v2

L2
− 1

using
X

L
= cos θ and

Y

L
= sin θ, where θ is defined to be positive in the anticlockwise direction.

Neglecting second order terms in the binomial expansion
√

(1 + ε) = 1 +
1

2
ε+O (ε2), the strain

for small displacements u and v is

e ∼= cos θ.
u

L
+ sin θ.

v

L
(5.1)
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The strain energy associated with this uniaxial stretch is

SE =
1

2

∫

σe dV =
1

2
A

L∫

0

σe dx =
1

2

L∫

0

EAe2 dx =
1

2
ALEe2 (5.2)

where σ = Ee is the stress in the truss (of cross-sectional area A), linearly related to the strain e
via Young’s modulus E. We now substitute for e from Equation (5.1) into Equation (5.2) and put

u = u2 − u1 and v = v2 − v1, where (u1, v1) and (u2, v2) are the nodal displacements of the two

ends of the truss

SE =
1

2
ALE

(

cos θ.
u2 − u1

L
+ sin θ.

v2 − v1
L

)2

(5.3)

The potential energy is the combined strain energy from all trusses in the structure minus the

work done on the structure by external forces. The Rayleigh-Ritz approach is to minimize this

potential energy with respect to the nodal displacements once all displacement boundary conditions

have been applied.

For example, consider the system of three trusses shown in Figure 5.2. A force of 100 kN
is applied in the x-direction at node 1. Node 2 is a sliding joint and has zero displacement in the

y-direction only. Node 3 is a pivot and therefore has zero displacement in both x- and y- directions.

The problem is to find all nodal displacements and the stress in the three trusses.

30◦

30◦

100 kN

node 3 node 2

node 1

3

1

2

FIGURE 5.2: A system of three trusses.

The strain in truss 1 (joining nodes 1 and 3) is

u1

L
cos 30 +

v1
L

sin 30 =

√
3

2

u1

L
+

1

2

v1
L

The strain in truss 2 (joining nodes 1 and 2) is

(u1 − u2)

L
cos 90 +

v1
L

sin 90 =
v1
L

The strain in truss 3 (joining nodes 2 and 3) is

u2

L
cos (−30) =

√
3

2

u2

L
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Since a force of 100 kN acts at node 1 in the x-direction, the potential energy is

PE =
∑

trusses

1

2
ALEe2 − 100u1 =

1

2

AE

L





(√
3

2
u1 +

1

2
v1

)2

+

(√
3

2
u2

)2

+ (v1)
2



− 100u1

[Note that if the force was applied in the negative x-direction, the final term would be +100u1]

Minimizing the potential energy with respect to the three unknowns u1, v1 and u2 gives

∂PE

∂u1
=

AE

L

(√
3

2
u1 +

1

2
v1

) √
3

2
− 100 = 0 (5.4)

∂PE

∂v1
=

AE

L

[(√
3

2
u1 +

1

2
v1

)

1

2
+ v1

]

= 0 (5.5)

∂PE

∂u2
=

AE

L

(√
3

2
u2

) √
3

2
= 0 (5.6)

If we choose A = 5 × 10−3 m2, E = 10 GPa and L = 1 m (e.g., 100 mm × 50 mm timber

truss) then
AE

L
= 5× 10−3 m2 ×107 kPa/m = 5× 104 kN m−1.

Equation (5.6) gives

u2 = 0

Equation (5.4) gives

3u1 +
√
3v1 = 4× 102/

(
5× 104

)

Equation (5.5) gives for two dimensions

v1 = −
√
3

5
u1

Solving these last two equations gives u1 = 3.34 mm and v1 = −1.15 mm. Thus the strain in truss

1 is (

√
3

2
3.34− 1

2
1.15)× 10−3 = 0.232%, in truss 2 is −0.115% and in truss 3 is zero.

The tension in truss 1 is Aσ = AEe = 5×10−3 m2107 kPa×0.232×10−2 = 116 kN (tensile),

in truss 2 is −57.5 kN (compressive) and in truss 3 is zero. The nodal reaction forces are shown in

Figure 5.3.

5.3 Beam Elements

Simple beam theory ignores all but axial strain ex and stress σx = Eex (E = Young’s modulus)

along the beam (assumed here to be in the x-direction). The axial strain is given by ex =
z

R
,

where z is the lateral distance from the neutral axis in the plane of the bending and R is the radius

of curvature in that plane. The bending moment is given by M =

∫

σxz dA , where A is the beam
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100 kN

57.7 kN

57.7 kN

100 kN

FIGURE 5.3: Reaction forces for the truss system of Figure 5.2.

crossectional area. Thus

σx = Eex = E
z

R
(5.7)

M =

∫

σxz dA =
E

R

∫

z2 dA =
EI

R
(5.8)

where I =

∫

z2 dA is the second moment of area of the beam cross-section. Thus,
E

R
=

M

I
and

Equation (5.7) becomes

σx =
Mz

I
(5.9)

The slope of the beam is
dw

dx
= θ and the rate of change of slope is the curvature

K =
dθ

dx
=

d2w

dx2
=

1

R
(5.10)

Thus the bending moment is

M = EI
d2w

dx2
= EIw′′ (5.11)

and a force balance gives the shear force

V = −dM

dx
= − d

dx
(EIw′′) (5.12)

and the normal force (per unit length of beam)

p =
dV

dx
= − d2

dx2
(EIw′′) (5.13)
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This last equation is the equilibrium equation for the beam, balancing the loading forces p with the

axial stresses associated with beam flexure

− d2

dx2

(

EI
d2w

dx2

)

= p (5.14)

The elastic strain energy stored in a bent beam is the sum of flexural strain energy and shear

strain energy, but this latter is ignored in the simple beam theory considered here. Thus, the

(flexural) strain energy is

SE =
1

2

L∫

x=0

∫

A

σxex dA dx =
1

2

L∫

x=0

E

∫

A

e2x dA dx

=
1

2

L∫

x=0

E

∫

A

( z

R

)2

dA dx =
1

2

L∫

x=0

EI (w′′)
2
dx

where x is taken along the beam and A is the cross-sectional area of the beam.

The external work associated with forces p acting normal to the beam and moving through a

transverse displacement w is

L∫

0

pw dx. The potential energy is therefore

PE =
1

2

L∫

0

EI (w′′)
2
dx−

L∫

0

pw dx. (5.15)

The finite element approximation for the transverse displacement w must be able to represent

the second derivative w′′. A linear basis function has a zero second derivative and therefore cannot

represent the flexural strain. The natural choice of basis function for beam deflection is in fact cubic

Hermite because the inter-element slope continuity of this basis ensures transmission of bending

moment as well as shear force across element boundaries.

The boundary conditions associated with the 4th order equilibrium Equation (5.14) or the equa-

tions arising from minimum potential energy Equation (5.15) (which contain the square of 2nd

derivative terms) are more complex than the simple temperature or flux boundary conditions for

the (second order) heat equation. Three possible combinations of boundary condition with their

associated reactions are
Boundary conditions Reactions

(i) Simply supported zero displacement w = 0 shear force V
zero moment M = EIw′′ = 0 slope θ(= w′)

(ii) Cantilever zero displacement w = 0 shear force V
zero slope θ = w′ = 0 moment M

(iii) Free end zero shear force V = − d

dx
(EIw′′) = 0 displacement w

zero moment M = EI ′′ = 0 slope θ
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5.4 Plane Stress Elements
For two-dimensional problems, we define the displacement vector u =

[
u
v

]

, strain vector e =




ex
ey
exy



 and stress vector σ =





σx

σy

σxy



. The stress-strain relation for two-dimensional plane stress:

σx =
E

1− ν2
(ex + νey)

σy =
E

1− ν2
(ey + νex)

σxy =
E

1 + ν
(exy)

(5.16)

can be written in matrix form

σ = Ee

where E =
E

1− ν2





1 ν 0
ν 1 0
0 0 1− ν



. The strain components are given in terms of displacement

gradients by

ex =
∂u

∂x

ey =
∂v

∂y

exy =
1

2

(
∂u

∂y
+

∂v

∂x

)
(5.17)

The strain energy is

SE =
1

2

∫

V

σTe dV =
1

2

∫

V

(exσx + eyσy + exyσxy) dV

=
1

2

∫

V

eTEe dV =
1

2

∫

V

E

1− ν2

[
e2x + e2y + 2νexey + (1− ν) e2xy

]
dV

The potential energy is

PE = SE − external work =
1

2

∫

V

eTEe dV −
∫

A

uT l dA (5.18)

where l represents the external loads (forces) acting on the elastic body.

Following the steps outlined in Section 5.1 we approximate the displacement field u with a
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finite element basis u = ϕnun, v = ϕnvn and calculate the strains

ex =
∂u

∂x
=

∂ϕn

∂x
un

ey =
∂v

∂y
=

∂ϕn

∂y
vn

exy =
1

2

(
∂u

∂y
+

∂v

∂x

)

=
1

2

(
∂ϕn

∂y
un +

∂ϕn

∂x
vn

)

(5.19)

or

e =





ex
ey
exy



 =










∂ϕn

∂x
0

0
∂ϕn

∂y
1

2

∂ϕn

∂y

1

2

∂ϕn

∂x










[
un

vn

]

= Bu (5.20)

From Equation (5.18) the potential energy is therefore

PE =
1

2

∫

V

(Bu)TE (Bu) dV −
∫

A

uT l dA

=
1

2
uT





∫

V

BTEB dV



u−
∫

A

uT l dA

=
1

2
uTKu−

∫

A

uT l dA

where K =

∫

V

BTEB dV is the element stiffness matrix.

We next minimize the potential energy with respect to the nodal parameters un and vn giving

Ku = f (5.21)

where f =

∫

A

l dA is a vector of nodal forces.

5.4.1 Notes on calculating nodal loads

If a known stress acts normal to a given surface (e.g., a surface pressure), it may be applied by

calculating equivalent nodal forces. For example, consider a uniform load p kN m−1 applied to the

edge of the plane stress element in Figure 5.4a.
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The nodal load vector f in Equation (5.21) has components

fn =

∫

x

pϕn dx = pL

1∫

0

ϕn dξ (5.22)

where ξ is the normalized element coordinate along the side of length L loaded by the constant

stress p kN m−1. If the element side has a linear basis, Equation (5.22) gives

f1 = pL

1∫

0

ϕ1 dξ = pL

1∫

0

(1− ξ) dξ =
1

2
pL

f2 = pL

1∫

0

ϕ2 dξ = pL

1∫

0

ξ dξ =
1

2
pL

as shown in Figure 5.4b. If the element side has a quadratic basis, Equation (5.22) gives

f1 = pL

1∫

0

ϕ1 dξ = pL

1∫

0

2

(
1

2
− ξ

)

(1− ξ) dξ =
1

6
pL

f2 = pL

1∫

0

ϕ2 dξ = pL

1∫

0

4ξ (1− ξ) dξ =
2

3
pL

f3 = pL

1∫

0

ϕ3 dξ = pL

1∫

0

2ξ

(

ξ − 1

2

)

dξ =
1

6
pL

as shown in Figure 5.4c. A node common to two elements will receive contributions from both

elements, as shown in Figure 5.4d.

5.5 Three-Dimensional Elasticity

Consider a surface Γ enclosing a volume Ω of material of mass density ρ. Conservation of linear

momentum over the domain Ω results in the governing stress equilibrium equations

σij,j + bi = 0 i, j = 1, 2, 3 (5.23)

where σij are the components of the stress tensor (σij is the component of the traction or stress

vector in the ith direction which is acting on the face of a rectangle whose normal is in the j th

direction), and bi is the body force/unit volume (e.g., b = ρg). Note that the notation σij,j =
∂σij

∂xj

has been introduced to represent the derivative.
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FIGURE 5.4: A uniform boundary stress applied to the element side in (a) is equivalent to nodal

loads of 1
2pL and 1

2pL for the linear basis used in (b) and to 1
6pL, 2

3pL and 1
6pL for the quadratic

basis used in (c). Two adjacent quadratic elements both contribute to a common node in (d), where

the element length is now L
2 .

Recall that the components of the linear (or small) strain tensor are

eij =
1

2
(ui,j + uj,i) i, j = 1, 2, 3 (5.24)

where u is the displacement vector (i.e., u is the difference between the final and initial positions

of a material point in question). Note: we are assuming here that the displacement gradients are

small compared to unity, which is appropriate for many materials in solid mechanics. However, for

soft materials, such as rubber or biological tissue, then we need to use the exact finite strain tensor.

The object of solving an elasticity problem is to find the distributions of stress and displacement

in an elastic body, subject to a known set of body forces and prescribed stresses or displacements

at the boundaries. In the general three-dimensional case, this means finding 6 stress components

σij (= σji which arises from the conservation of angular momentum) and 3 displacements ui each

as a function of position in the body. Currently we have 15 unknowns (6 stresses, 6 strains and 3
displacements), but only 9 equations (3 equilibrium equations and 6 strain-displacement relations).

To progress, we require an equation of state, i.e., a stress-strain relation or constitutive law. For

a linear elastic material we may propose that the components of stress σij depend linearly on eij .
i.e.,

σij = cijklekl

where cijkl are the 81 components of a 4th order tensor, although symmetry of the strain and stress

tensors reduces the number of independent components to 21.

If the material is assumed to be isotropic (i.e., the material response is independent of orienta-

tion of the material element), then we end up with the generalized Hooke’s Law.

σij = λekkδij + 2µeij (5.25)

or inversely

eij =
1

2µ
σij −

λ

2µ (3λ+ 2µ)
σkkδij
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where λ, µ are Lamés constants.

Note: λ, µ are related to Young’s modules E and Poisson’s ratio ν by

E =
µ (3λ+ 2µ)

λ+ µ

ν =
λ

2 (λ+ µ)

Providing that the displacements are continuous functions of position, then Equation (5.23),

Equation (5.24) and Equation (5.25) are sufficient to determine the 15 unknown quantities. This

can often work with some smaller grouping or simplification of these equations, e.g., if all bound-

ary conditions are expressed in terms of displacements, substituting Equation (5.24) into Equa-

tion (5.25) then into Equation (5.23) yields Navier’s equation of motion.

µui,kk + (λ+ µ)uk,ki + bi = 0 i, k = 1, 2, 3

These 3 equations can be solved for the unknown displacements. Then Equation (5.24) can be used

to determine the strains and Equation (5.25) to calculate the stresses.

5.5.1 Weighted Residual Integral Equation

Using weighted residuals as before we can write

∫

Ω

(σij,j + bi)u
∗
i dΩ = 0 (5.26)

where u∗ = (u∗
i ) is a (vector) weighting field. The u∗

i are usually interpreted as a consistent set of

virtual displacements (hence we use the notation u instead of w).

By the chain-rule

(σiju
∗
i ),j = σij,ju

∗
i + σiju

∗
i,j

Therefore, the first term in the integrand of Equation (5.26) can be re-written

∫

Ω

σij,ju
∗
i dΩ =

∫

Ω

(σiju
∗
i ),j dΩ−

∫

Ω

σiju
∗
i,j dΩ

=

∫

Ω

∇ · (σiju
∗
i ) dΩ−

∫

Ω

σiju
∗
i,j dΩ

=

∫

∂Ω

σiju
∗
inj dΓ−

∫

Ω

σiju
∗
i,j dΩ (5.27)

where the domain integral involving “∇· =
∂

∂xj

” has been transformed into a surface integral
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using the divergence theorem

∫

Ω

∇ · g dΩ =

∫

∂Ω

g · n dΓ or

∫

Ω

gj,j dΩ =

∫

∂Ω

gjnj dΓ

where n = njij is the outward normal vector to the surface Γ.

Thus, combining Equation (5.26) and Equation (5.27) we have

∫

Ω

σiju
∗
i,j dΩ =

∫

Ω

biu
∗
i dΩ+

∫

∂Ω

σijnju
∗
i dΓ

=

∫

Ω

biu
∗
i dΩ+

∫

∂Ω

tiu
∗
i dΓ (5.28)

where ti are the components of the internal stress vector (t) and are related to the components of

the stress tensor (σij) by Cauchy’s formula

t = σijnjii (5.29)

To arrive at this point, we have used weighted residuals to tie in with Chapter 2, however

Equation (5.28) is more usually derived using the principle of virtual work (below). Note that the

weighted integral Equation (5.28) is independent of the constitutive law of the material.

5.5.2 The Principle of Virtual Work

The governing equations for elastostatics can also be derived from a physically appealing argument.

Let s be the external traction vector (i.e., force per unit surface area). For equilibrium, the work

done by the external surface forces s = siii, in moving through a virtual displacement u∗ = u∗
i ii

is equal to the work done by the stress vector t = tiii in moving through a compatible set of virtual

displacements u∗. In mathematical terms, the principle of virtual work can be written

∫

∂Ω

siu
∗
i dΓ =

∫

∂Ω

tiu
∗
i dΓ =

∫

∂Ω

σijnju
∗
i dΓ (5.30)

using Cauchy’s formula (Equation (5.29)).

The Green-Gauss theorem (Equation (2.15)) is now used to replace the right hand surface

integral in Equation (5.30) by a volume integral, giving

∫

∂Ω

siu
∗
i dΓ =

∫

Ω

(
σij,ju

∗
i + σiju

∗
i,j

)
dΩ (5.31)

Substituting the equilibrium relation (Equation (5.23)) into the first integrand on the right hand
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side, yields the virtual work equation

∫

Ω

σiju
∗
i,j dΩ =

∫

Ω

biu
∗
i dΩ+

∫

∂Ω

siu
∗
i dΓ (5.32)

where the internal work done due to the stress field is equated to the work due to internal body

forces and external surface forces. Note that Equation (5.32) is equivalent to Equation (5.28) via

Equation (5.30). In practice, Equation (5.32) is in a more useful form than Equation (5.28), because

the right hand side integrals can be expressed in terms of the known body forces and the applied

boundary conditions (surface traction forces or stresses).

5.5.3 The Finite Element Approximation

Let Ω =
⋃

Ωe and interpolate the virtual displacements u∗
i from their nodal values. i.e.,

u∗
i = ϕm(̇u

m
i )

∗

so u∗
i,j =

∂ϕm

∂xj

(̇um
i )

∗

= ϕm,k

∂ξk
∂xj

(̇um
i )

∗

(5.33)

where (um
i )

∗ = (U
△(m,e)
i )∗, △(m, e) is the global node number of local node m on element e, and

the shorthand ϕm,k =
∂ϕm

∂ξk
has been introduced.

Substituting this into Equation (5.32) gives

∑

e





∫

Ωe

σijϕm,k

∂ξk
∂xj

dΩ





(

U
△(m,e)
i

)∗

=
∑

e





∫

Ωe

biϕm dΩ+

∫

∂Ωe

siϕm dΓ





(

U
△(m,e)
i

)∗

and since the virtual displacements are arbitrary we get

∑

e

∫

Ωe

σijϕm,k

∂ξk
∂xj

dΩ =
∑

e





∫

Ωe

biϕm dΩ +

∫

∂Ωe

siϕm dΓ



 (5.34)

The next step is to express the stress components σij in terms of the virtual displacements

and their finite element approximation by substituting Equation (5.33) into Equation (5.24) (the

strain-displacement relation) and in turn into Equation (5.25) (the generalized Hooke’s law).

We first introduce the finite element approximation for the displacement field uj = ϕnu
n
j which

gives

eij =
1

2

(
∂

∂xj

(ϕnu
n
i ) +

∂

∂xi

(
ϕnu

n
j

)
)

=
1

2

(
∂ϕn

∂ξl

∂ξl
∂xj

un
i +

∂ϕn

∂ξl

∂ξl
∂xi

un
j

)

(5.35)
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and

ekk = uk,k =
∂ϕn

∂ξl

∂ξl
∂xk

un
k

Thus

σij = λδij
∂ϕn

∂ξl

∂ξl
∂xk

un
k + 2µ

(
1

2

∂ϕn

∂ξl

∂ξl
∂xj

un
i +

1

2

∂ϕn

∂ξl

∂ξl
∂xi

un
j

)

which, due to symmetry of the stress tensor, simplifies to

σij = λδij
∂ϕn

∂ξl

∂ξl
∂xk

un
k + 2µ

∂ϕn

∂ξl

∂ξl
∂xi

un
j

=

(

λδi(j)ϕn,l

∂ξl
∂xj

+ 2µϕn,l

∂ξl
∂xi

)

un
j (5.36)

where the summation index k has been replaced with j, but the parenthesis in δi(j) implies that

there is no sum with respect to that particular index.

Substituting this expression into Equation (5.34) and simplifying, we get for each element

un
j

∫

Ωe

(

λϕn,l

∂ξl
∂xj

ϕm,k

∂ξk
∂xi

+ 2µϕn,l

∂ξl
∂xi

ϕm,k

∂ξk
∂xj

)

dΩ = fim (5.37)

where fim denotes the right hand side terms in Equation (5.34). (Note that there has been some

careful manipulation of summation indices with the substitution of Equation (5.36) to arrive at

Equation (5.37).)

So for each element

Eimjnu
n
j = fim

where

Eimjn =

1∫∫∫

0

(

λ
∂ξl
∂xj

∂ξk
∂xi

+ 2µ
∂ξl
∂xi

∂ξk
∂xj

)

ϕn,lϕm,kJ(ξ1, ξ2, ξ3)dξ1dξ2dξ3

fim =

1∫∫∫

0

biϕmJ(ξ1, ξ2, ξ3)dξ1dξ2dξ3 +

1∫∫

0

siϕmJ2D(ξ1, ξ2)dξ1dξ2

(5.38)

where the Jacobians J(ξ1, ξ2, ξ3) and J2D(ξ1, ξ2) have been used to transform volume and sur-

face integrals so that they can be can be calculated using ξ-coordinates. (Note: without loss of

generality, the above definition of fim assumes that (ξ1, ξ2) are defined to lie in the surface Γ.)

So in summary, the finite element approximation leads to element stiffness matrix components

that can be calculated from the known material parameters, the chosen interpolation functions, and

the geometry of the material (note that the element stiffness components are independent of the

unknown displacement parameters). Element stiffness components are then assembled into the

global stiffness matrix in the usual manner (as described previously). Note that this is implicitly a

Galerkin formulation, since the unknown displacement fields are interpolated using the same basis

functions as those used to weight the integral equations.
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5.6 Linear Elasticity with Boundary Elements

Equation (5.28) is the starting point for the general finite element formulation (Section 5.5). In

the above derivation, we have essentially used the Green-Gauss theorem once to move from Equa-

tion (5.26) to Equation (5.28) (as was done for the derivation of the FEM equation for Laplace’s

equation). To continue, we firstly note that

σije
∗
ij =

1

2
σiju

∗
i,j +

1

2
σiju

∗
j,i

=
1

2
σiju

∗
i,j +

1

2
σjiu

∗
j,i

=
1

2
σiju

∗
i,j +

1

2
σiju

∗
i,j

= σiju
∗
i,j

where e∗ij are the virtual strains corresponding to the virtual displacements.

Using the constitutive law for linearly elastic materials (Equation (5.25)) we have

∫

Ω

σiju
∗
i,j dΩ =

∫

Ω

σije
∗
ij dΩ

= λ

∫

Ω

ekke
∗
ijδij dΩ + 2µ

∫

Ω

eije
∗
ij dΩ

= λ

∫

Ω

ekke
∗
kk dΩ + 2µ

∫

Ω

eije
∗
ij dΩ

=

∫

Ω

eijσ
∗
ij dΩ

due to symmetry.

Thus from the virtual work statement, Equation (5.28) and the above symmetry we have

∫

Ω

biu
∗
i dΩ+

∫

∂Ω

tiu
∗
i dΓ =

∫

Ω

b∗iui dΩ+

∫

∂Ω

t∗iui dΓ (5.39)

This is known as Betti’s second reciprical work theorem or the Maxwell-Betti reciprocity relation-

ship between two different elastic problems (the starred and unstarred variables) established on the

same domain.

Note that b∗i = −σ∗
ij,j (i.e., σ∗

ij,j + b∗i = 0). Therefore Equation (5.39) can be written as

∫

Ω

(
σ∗
ij,j

)
ui dΩ +

∫

Ω

biu
∗
i dΩ =

∫

∂Ω

t∗iui dΓ−
∫

∂Ω

tiu
∗
i dΓ (5.40)

(σ∗
ij , e

∗
ij, t

∗
i represents the equilibrium state corresponding to the virtual displacements u∗

i ).
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Note: What we have essentially done is use integration of parts to get Equation (5.28), then use

it again to get Equation (5.39) above (after noting the reciprocity between σij and eij).
Since the body forces, bi, are known functions, the second domain integral on the left hand

side of Equation (5.40) does not introduce any unknowns into the problem (more about this later).

The first domain integral contains unknown displacements in Ω and it is this integral we wish to

remove.

We choose the virtual displacements such that

σ∗
ij,j + eiδ = 0 (5.41)

(or equivalently −b∗i + eiδ = 0), where ei is the ith component of a unit vector in the ith direction

and eiδ = eiδ (x− P ). We can interpret this as the body force components which correspond to a

positive unit point load applied at a point P ∈ Ω in each of the three orthogonal directions.

Therefore

∫

Ω

σ∗
ij,jui dΩ = −

∫

Ω

δ (x− P ) eiui dΩ = −ui(P )ei

i.e., the volume integral is replaced with a point value (as for Laplace’s equation).

Therefore, Equation (5.40) becomes

ui (P ) ei =

∫

∂Ω

tju
∗
j dΓ−

∫

∂Ω

t∗juj dΓ +

∫

Ω

bju
∗
j dΩ P ∈ Ω (5.42)

If each point load is taken to be independent then u∗
j and t∗j can be written as

u∗
j = u∗

ij (P, x) ei (5.43)

t∗j = t∗ij (P, x) ei (5.44)

where u∗
ij (P, x) and t∗ij (P, x) represent the displacements and tractions in the j th direction at x

corresponding to a unit point force acting in the ith direction (ei) applied at P . Substituting these

into Equation (5.42) (and equating components in each ei direction) yields

ui (P ) =

∫

∂Ω

u∗
ij (P, x) tj (x) dΓ (x)−

∫

∂Ω

t∗ij (P, x) uj (x) dΓ (x)

+

∫

Ω

u∗
ij (P, x) bj (x) dΩ (x) (5.45)

where P ∈ Ω (see later for P ∈ ∂Ω).

This is known as Somigliana’s 1 identity for displacement.

1Somigliana was an Italian Mathematician who published this result around 1894-1902.
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5.7 Fundamental Solutions

Recall from Equation (5.41) that σ∗
ij satisfied

σ∗
ij,j + δ (x− P ) ei = 0 (5.46)

or equivalently

b∗i = eiδ (x− P )

Navier’s equation for the displacements u∗
i is

G u∗
i,kk +

G

1− 2ν
u∗
k,ki + b∗i = 0

where G = shear Modulus.

Thus u∗
i satisfy

G u∗
i,kk +

G

1− 2ν
u∗
k,ki + δ (x− P ) ei = 0 (5.47)

The solutions to the above equation in either two or three dimensions are known as Kelvin 2’s

fundamental solutions and are given by

u∗
ij (P,x) =

1

16π (1− ν)Gr
{(3− 4ν) δij + r,ir,j} (5.48)

for three-dimensions and for two-dimensional plane strain problems,

u∗
ij (P,x) =

−1

8π (1− ν)G
{(3− 4ν) δij log r − r,ir,j} (5.49)

and

t∗ij (P,x) =
−1

4απ (1− ν) rα

{

((1− 2ν) δij + βr,ir,j)
∂r

∂n
− (1− 2ν) (r,inj − r,jni)

}

(5.50)

where α = 1, 2; β = 2, 3 for two-dimensional plane strain and three-dimensional problems respec-

tively.

Here r ≡ r (P,x), the distance between load point (P ) and field point (x), ri = xi (x)−xi (P )

and r,i =
∂r

∂xi (x)
=

ri
r

.

In addition the strains at an point x due to a unit point load applied at P in the ith direction are

given by

e∗jki (P,x) =
−1

8απ (1− ν)Grα
{(1− 2ν) (r,kδij + r,jδik)− r,iδjk + βr,ir,jr,k}

2Lord Kelvin (1824-1907) Scottish physicist who made great contributions to the science of thermodynamics
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and the stresses are given by

σ∗
ijk (P,x) =

−1

4απ (1− ν) rα
{(1− 2ν) (r,kδij + r,jδki − r,iδjk) + βr,ir,jr,k}

where α and β are defined above.

The plane strain expressions are valid for plane stress if ν is replaced by ν =
ν

1 + ν
(This is a

mathematical equivalence of plane stress and plane strain - there are obviously physical differences.

What the mathematical equivalence allows us to do is to use one program to solve both types of

problems - all we have to do is modify the values of the elastic constants).

Note that in three dimensions

u∗
ij = O

(
1

r

)

t∗ij = O

(
1

r2

)

and for two dimensions

u∗
ij = O (log r) t∗ij = O

(
1

r

)

.

Somigliana’s identity (Equation (5.45)) is a continuous representation of displacements at any

point P ∈ Ω. Consequently, one can find the stress at any P ∈ Ω firstly by combining derivatives

of (5.45) to produce the strains and then substituting into Hooke’s law. Details can be found in

Brebbia, Telles & Wrobel (1984b) pp 190–191, 255–258.

This yields

σij (P ) =

∫

Γ

u∗
ijk (P,x) tk (x) dΓ (x)−

∫

Γ

t∗ijk (P,x) uk (x) dΓ (x)

+

∫

Ω

u∗
ijk (P,x) bk (x) dΩ (x)

Note: One can find internal stress via numerical differentiation as in FE/FD but these are not

as accurate as the above expressions.

Expressions for the new tensors u∗
ijk and t∗ijk are on page 191 in (Brebbia et al. 1984b).

5.8 Boundary Integral Equation

Just as we did for Laplace’s equation we need to consider the limiting case of Equation (5.45) as

P is moved to ∂Ω. (i.e., we need to find the equivalent of c (P ) (in section 3) - called here cij (P ).)
We use the same procedure as for Laplace’s equation but here things are not so easy.

If P ∈ ∂Ω we enlarge Ω to Ω′ as shown.
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Γ−ε

Ω

Ω′
Γε

ε

P

FIGURE 5.5: Illustration of enlarged domain when singular point is on the boundary.

Then Equation (5.45) can be written as

ui (P ) =

∫

Γ−ε+Γε

u∗
ij (P,x) tj (x) dΓ (x)−

∫

Γ−ε+Γε

t∗ij (P,x) uj (x) dΓ (x)

+

∫

Ω′

u∗
ij (P,x) bj (x) dΩ (x) (5.51)

We need to look at each integral in turn as ε↓0 (i.e., ε → 0 from above). The only integral that

presents a problem is the second integral. This can be written as

∫

Γ−ε+Γε

t∗ij (P,x) uj (x) dΓ (x) =

∫

Γε

t∗ij (P,x) uj (x) dΓ (x)

+

∫

Γ−ε

t∗ij (P,x) uj (x) dΓ (x) (5.52)

The first integral on the right hand side can be written as

∫

Γε

t∗ij (P,x) uj (x) dΓ (x) =

∫

Γε

t∗ij (P,x) [uj (x)− uj (P )] dΓ(x)

︸ ︷︷ ︸

0 by continuity of uj (x)

+ uj (P )

∫

Γε

t∗ij (P,x) dΓ (x) (5.53)
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Let

cij (P ) = δij + lim
ε↓0

∫

Γε

t∗ij (P,x) dΓ (x) (5.54)

As ε↓0, Γ−ε → Γ and we write the second integral of Equation (5.52) as

∫

Γ

t∗ij (P,x)uj (x) dΓ (x)

where we interpret this in the Cauchy Principal Value3sense.

Thus as ε↓0 we get the boundary integral equation

cij (P )uj (P ) +

∫

Γ

t∗ij (P,x)uj (x) dΓ (x)

=

∫

Γ

u∗
ij (P,x) tj (x) dΓ (x) +

∫

Ω

u∗
ij (P,x) bj (x) dΩ (5.55)

(or, in brief (no body force), cijuj +

∫

Γ

t∗ijuj dΓ =

∫

Γ

u∗
ijtj dΓ) where the integral on the left hand

side is interpreted in the Cauchy Principal sense. In practical applications cij and the principal value

integral can be found indirectly from using Equation (5.55) to represent rigid-body movements.

The numerical implementation of Equation (5.55) is similar to the numerical implementation

of an elliptic equation (e.g., Laplace’s Equation). However, whereas with Laplace’s equation the

unknowns were u and
∂u

∂n
(scalar quantities) here the unknowns are vector quantities. Thus it is

more convenient to work with matrices instead of indicial notation.

3What is a Cauchy Principle Value?

Consider f (x) =
1

x
on Γ−ε = [−2,−ε) ∪ (ε, 2]

Then

∫

Γ
−ε

f (x) dx =

−ε∫

−2

1

x
dx+

2∫

ε

1

x
dx = ln |x||−ε

−2
+ ln |x||2

ε

= ln ε− ln 2 + ln 2− ln ε = 0 ∀ε > 0

⇒ lim
ε→0

∫

Γ
−ε

f (x) dx = 0 This is the Cauchy Principle Value of

∫

Γ

f (x) dx

But if we replace Γ−ε by lim
ε→0

Γ−ε = [−2, 2] = Γ then

∫

Γ

1

x
dx =

2∫

−2

1

x
dx =



 lim
ε1→0

ε1∫

−2

1

x
dx



 +



 lim
ε2→0

2∫

−ε2

1

x
dx



(by definition of improper integration)

which does NOT exist. i.e., the integral does not exist in the proper sense, but it does in the Cauchy Principal Value

sense. However, if an integral exists in the proper sense, then it exists in the Cauchy Principal Value sense and the two

values are the same.
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i.e., use

u =





u1

u2

u3



 , t =





t1
t2
t3





u∗ =





u∗
11 u∗

12 u∗
13

u∗
21 u∗

22 u∗
23

u∗
31 u∗

32 u∗
33



 , t∗ =





t∗11 t∗12 t∗13
t∗21 t∗22 t∗23
t∗31 t∗32 t∗33





Then (in absence of a body force) we can write Equation (5.55) as

cu+

∫

Γ

t∗u dΓ =

∫

Γ

u∗t dΓ (5.56)

We can discretise the boundary as before and put P , the singular point, at each node (each

node has 6 unknowns - 3 displacements and 3 tractions - we get 3 equations per node). The overall

matrix equation

AU = BT (5.57)

where U =








u1

u2
...

un








and t =








t1
t2
...

tn








where n is the number nodes.

The diagonal elements of the A matrix in Equation (5.57) (for three-dimensions, a 3 x 3 matrix)

contains principal value components. If we have a rigid-body displacement of a finite body in any

one direction then we get

AI l = 0

(I l = vector defining a rigid body displacement in direction l)

⇒ aii = −
∑

i 6=j

aij (no sum on i)

i.e., the diagonal entries of A (the cij’s) do not need to be determined explicitly. There is a similar

result for an infinite body.

5.9 Body Forces (and Domain Integrals in General)

The body force gives rise to a domain integral although it does not give rise to any further unknowns

in the system of equations. (This is because the body force is known - the fundamental solution

was chosen so that it removed all unknowns appearing in domain integrals).

Thus Equation (5.55) is still classed as a Boundary Integral Equation. Integrals over the domain

containing known functions (eg body force integral) appear in many situations e.g., the Poisson

equation ∇2
u = f yields a domain integral involving f .

The question is how do we evaluate domain integrals such as those appearing in the boundary

integral forumalation of such equations? Since the functions are known a coarse domain mesh
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may work.(n.b. Since the integral also contains the fundamental solution and Ω may not be a

“nice” region it is unlikely that it can be evaluated analytically). However, a domain mesh nullifies

one of the advantages of BEM - that of having to prepare only a boundary mesh.

In some cases domain integrals must be used but there are techniques developing to avoid many

of them. In some standard situations a domain integral can be transformed to a boundary integral.

e.g., a body force arising from a constant gravitational load, or a centrifugal load due to rotation

about a fixed axis or the effect of a steady state thermal load can all be transformed to a boundary

integral.

Firstly, let G∗
ij (the Galerkin tension) be related to u∗

ij by

u∗
ij = G∗

ij,kk −
1

2 (1− ν)
G∗

ik,kj

⇒ Gij =







1

8πG
rδij (3D)

1

8πG
r2 log

(
1

r

)

δij (2D)

Then

Bi =

∫

Ω

u∗
ijbj dΩ =

∫

Ω

(

G∗
ij,kk −

1

2 (1− ν)
G∗

ik,kj

)

bj dΩ

Under a constant gravitational load g = (gj)

bj = ρgj

⇒ Bi = ρgj

∫

Ω

(

G∗
ik,j −

1

2 (1− ν)
G∗

ik,kj

)

dΩ

= ρgj

∫

Γ

{

G∗
ij,k −

1

2 (1− ν})G∗
ik,j

}

nk dΓ

which is a boundary integral.

Unless the domain integrand is “nice” the above simple application of Green’s theorem won’t

work in general. There has been a considerable amount of research on domain integrals in BEM

which has produced techniques for overcoming some domain methods. The two integrals of note

are the DRM, dual reciprocity method, developed around 1982 and the MRM, multiple reciprocity

method, developed around 1988.
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5.10 CMISS Examples

1. To solve a truss system run CMISS example 411 This solves the simple three truss system

shown in Figure 5.2.

2. To solve stresses in a bicycle frame modelled with truss elements run CMISS example 412.





Chapter 6

Modal Analysis

6.1 Introduction

The system of ordinary differential equations which results from the application of the Galerkin

finite element (or other) discretization of the spatial domain to linear parabolic or hyperbolic equa-

tions can either be integrated directly - as in the last section for parabolic equations - or analysed

by mode superposition. That is, the time-dependent solution is expressed as the superposition of

the natural (or resonant) modes of the system. To find these modes requires the solution of an

eigenvalue problem.

6.2 Free Vibration Modes

Consider an extension of Equation (4.22) which includes second order time derivatives (e.g., nodal

point accelerations)

Mü (t) +Cu̇ (t) +Ku (t) = f (t) (6.1)

M ,C and K are the mass, damping and stiffness matrices, respectively, f (t) is the external load

vector and u (t) is the vector of n nodal unknowns. In direct time integration methods ü (t) and

u̇ (t) are replaced by finite differences and the resulting system of algebraic equations is solved at

successive time steps. For a small number of steps this is the most economical method of solution

but, if a solution is required over a long time period, or for a large number of different load vectors

f (t), a suitable transformation

u (t) = Px (t) (6.2)

applied to Equation (6.1) can result in the matrices of the transformed system

P TMPẍ (t) + P TCPẋ (t) + P TKPx (t) = P Tf (6.3)

having a much smaller bandwidth than in the original system and hence being more economical

to solve. In fact, if damping is neglected, P can be chosen to diagonalize M and K and thereby

uncouple the equations entirely. This transformation (which is still applicable when damping is

included but does not then result in an uncoupled system unless further simplications are made) is
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found by solving the free vibration problem

Mü (t) +Ku (t) = 0 (6.4)

Proof: Consider a solution to Equation (6.4) of the form

u (t) = s sinω (t− t0) , (6.5)

where ω and t0 are constants and s is a vector of order n. Substituting Equation (6.5) into Equa-

tion (6.4) gives the generalized eigenproblem

Ks = ω2Ms (6.6)

having n eigensolutions (ω2
1s1) , (ω

2
2s2) , . . . , (ω

2
nsn). If K is a symmetric matrix (as is the case

when the original partial differential operator is self-adjoint) the eigenvectors are orthogonal and

can be “normalized” such that

si
TMsj =

{
1 i = j
0 i 6= j

(6.7)

(the eigenvectors are said to be M-orthonormalised). Combining the n eigenvectors into a matrix

S = [s1, s2, . . . , sn] - the modal matrix - rewriting Equation (6.7) as

STMS = I (6.8)

where I is the identity matrix, (6.6) becomes

KS = MSΛ (6.9)

where

Λ =








ω2
1 0

ω2
2

. . .

0 ω2
n








(6.10)

or

STKS = STMSΛ = IΛ = Λ (6.11)

Thus the modal matrix - whose columns are the M-orthonormalised eigenvectors of K (i.e.,

satisfying Equation (6.6)) - can be used as the transformation matrix P in Equation (6.2) required

to reduce the original system of equations (6.1) to the canonical form

ẍ (t) + STCSẋ (t) +Λx (t) = STf (t) (6.12)

With damping neglected equation Equation (6.12) becomes a system of uncoupled equations

ẍi (t) + ω2
i xi (t) = ri (t) i = 1, 2, . . . , n (6.13)

where xi is the ith component of x and ri is the ith component of the vector STf . The solution of
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this system is given by the Duhamel integral

xi (t) =
1

ωi

t∫

0

ri (τ) sinωi (t− τ) dτ + αi sinωit+ βi cosωidτ (6.14)

where the constants αi and βi are determined from the initial conditions

xi (0)|t=0 = si
TM u (0)|t=0

ẋi (0)|t=0 = xi (0)|t=0 = si
TM u (0)|t=0 si

TM u (0)|t=0

(6.15)

6.3 An Analytic Example

As an example, consider the equilibrium equations Mü+Ku = f where

M =

[
2 0
0 1

]

, K =

[
6 −2
−2 4

]

and f =

[
0
10

]

To find the solution by modal analysis we first solve the generalised eigenproblem Ks = ω2Ms

i.e., [
6− 2ω2 −2
−2 4− ω2

]

s = 0

has a solution when det [K − ω2M ] = 0 or ω4 − 7ω2 + 10 = 0. This characteristic polynomial

has solutions ω2 = 2, 5 with corresponding eigenvectors sT1 = a
[
1 1

]
, sT1 = b

[
−1 2

]
. To find

the magnitude of the eigenvectors we use Equation (6.7), i.e.,

a2
[
1 1

]
[
2 0
0 1

] [
1
1

]

= 1 ⇒ a =
1√
3

b2
[
−1 2

]
[
2 0
0 1

] [
−1
2

]

= 1 ⇒ b =
1√
3

(Notice that the orthogonality condition is satisfied: ab
[
1 1

]
[
2 0
0 1

] [
−1
2

]

= 0).

The M-orthognormalised eigenvectors are now sT1 =

[
1√
3

1√
3

]

and sT2 =

[

− 1√
6

2√
6

]

,

giving the modal matrix S =






1√
3

− 1√
6

1√
3

2√
6




 which, when used as the transformation matrix,

reduces the stiffness matrix to

STKS =






1√
3

1√
3

− 1√
6

2√
6






[
6 −2
−2 4

]






1√
3

− 1√
6

1√
3

2√
6




 =

[
2 0
0 5

]

= Λ



110 MODAL ANALYSIS

and the mass matrix to

STMS =






1√
3

1√
3

− 1√
6

2√
6






[
2 0
0 1

]






1√
3

− 1√
6

1√
3

2√
6




 =

[
1 0
0 1

]

= I

Thus the natural modes of the system are given by

u1 (t) =






1√
3
1√
3




 sin

√
2 (t− t0) and u2 (t) =






− 1√
6

2√
6




 sin

√
5 (t− t′0) .

The solution of the non-homogeneous system, subject to given initial conditions, is found by solv-

ing the uncoupled equations

ẍ (t) +

[
2 0
0 5

]

x (t) =






1√
3

1√
3

− 1√
6

2√
6






[
0
10

]

=






10√
3

20√
6






by means of the Duhamel integral (6.14) (in this case with r constant) and then, from Equation (6.2)

with P ≡ S = [(s1, s2, . . . , sn]

u (t) = Sx (t) =

n∑

i=1

sixi (t) (6.16)

Notice that the solution is expressed in Equation (6.16) as the superposition of the natural

modes (eigenvectors) of the homogeneous equations. If the forcing function (load vector) is close

to one of these modes the corresponding coefficient xi will be large and will dominate the response

- if it coincides then resonance will occur. Very often it is unnecessary to evaluate all n eigenvectors

of the system; the higher frequency modes can be ignored and the solution adequately represented

by superposition of the p eigenvectors associated with the p lowest eigenvalues, where p < n.

6.4 Proportional Damping

When element damping terms are included in the original dynamic equations (6.1) the transforma-

tion to a lower bandwidth system is still based on the model matrix S but Equation (6.12) is then

not a system of uncoupled equations. One simplification often made in order to retain the diago-

nal nature of Equation (6.12) is to approximate the overall energy dissipation of the finite element

system with proportional damping

si
TCsj = 2ωiξiδij, (6.17)
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where ξi is a modal damping parameter and δij is the Kronecker delta. Equation (6.12) now reduces

to n equations of the form

ẍi (t) + 2ωiξiẋi (t) + ω2
1x1 (t) = ri (t) (6.18)

with solution (the Duhamel integral)

xi (t) =
1

ωi

t∫

0

ri (τ) .e
ξiωi(t−τ). sinωi (t− τ) dt+ e−ξiωit {αi sinωit+ βi cosωit} (6.19)

where ωi = ωi

√

1− ξ2i . αi and βi are calculated from the initial conditions Equation (6.15).

Once the components xi (t) have been found from Equation (6.19) (or alternative time integration

methods applied to (6.18)), the solution u (t) is expressed as a superposition of the mode shapes

si by Equation (6.16).

6.5 CMISS Examples

1. To analyse a plane stress modal analysis run CMISS example 451

2. To analyse a clamped beam modal analysis run CMISS example 452

3. To analyse a steel-framed building modal analysis run CMISS example 453





Chapter 7

Derivative BIE

7.1 Boundary Element Formulation

The BEM will be used in any region of the torso in which the conductivity can be reasonably

taken to be constant (e.g. the lungs). Thus the equation to be solved in such a region is simply the

Laplace equation. The conventional boundary integral equation for Laplace’s equation,

∇2φ = 0 (7.1)

in a (closed) domain Ω ⊂ R
m; (m = 2 or 3) can be written as

C(P0)φ(P0) =

(

G(P, P0)
∂φ(P )

∂n
− ∂G(P, P0)

∂n
φ(P )

)

dΓ(P ) (7.2)

where C(P0) = 1 if P0 ∈ Ω0, and G(P, P0) is the fundamental solution for the Laplace equation

in either two or three dimensions (i.e., G(P, P0) = − 1
2π

log ‖ P − P0 ‖ or 1
4π

‖ P − P0 ‖ ).

The standard procedure in a boundary element formulation is to take the point P0 to be one of

the nodes used to approximate the dependent variable φ, and this generates one integral equation

for each node. When Lagrange interpolation is used for φ there is only one unknown per node

(allowing for boundary conditions and assuming no free surfaces). This means that a square sys-

tem of equations is produced and a unique solution can be found. However, when using cubic

Hermite interpolation there is always more than one unknown per node - in two-dimensions there

are 2 (with Neuman boundary conditions these are φ and
∂φ

∂s
) and in three-dimensions there are 4

(with Neuman boundary conditions these are φ,
∂φ

∂s1
,
∂φ

∂s2
and ∂2φ

∂s1∂s2
). Thus one needs to generate

extra linearly independent equations. This is achieved by differentiating (7.2) in various directions

(Tomlinson, Bradley & Pullan 1996), yielding a hypersingular integral formulation.

Taking the directional derivative of (7.2) at P0 in an (initially) arbitrary direction n0(‖ n0 ‖= 1)
gives

∂φ(P0)

∂n0
=

∫

∂Γ

(
∂G(P, P0)

∂n

∂φ(P )

∂n
− ∂2G(P, P0)

∂n∂n0
φ(P )

)

dΓ(P ) (7.3)
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valid ∀P0 ∈ Ω0. The hypersingular fundamental solution
∂2G(P,P0)
∂n∂n0

is given by either

1
2π

[
n.n0

r2
− 2(r.n0)(r.n)

r4

]

(two-dimensions)

or 1
4π

[
n.n0

r3
− 3(r.n0)(r.n)

r5

]

(three-dimensions)

Here r is the vector of modulus r =‖ P − P0 ‖ from P0 to P,n is the unit outward normal vector

and n0 is the unit vector in the direction of differentiation.

At this stage the integral expression (7.3) is well defined. With P0 placed on the boundary

of Ω the second integrand is termed hypersingular and it is the interpretation of this term and

the procedure used to take P0 to the boundary that gives rise to the variety of integral expressions

currently in use in hypersingular boundary integral formulations. To obtain a weakly-singular form

of the derivative equation , one requires the following identities

∫

∂Ω

∂G(P, P0)

∂n
dΓ(P ) = −1 ∀P0 ∈ Ω0 (7.4)

∫

∂Ω

∂2G(P, P0)

∂n∂n0
dΓ(P ) = 0 ∀P0 ∈ Ω0 (7.5)

∫

∂Ω

(

nk

∂G(P, P0)

∂n0
− (xk − x0k)

∂2G(P, P0)

∂n∂n0

)

dΓ(P ) = n0k(P0) ∀P0 ∈ Ω0 (7.6)

The first two of these identities are obtained from (7.2) and (7.3) respectively by putting φ ≡ 1.

The third identity is also obtained from (7.3) by substitution of xk−x0k (where xk, x0k, nk, n0k are

the kth cartesian components of P, P0, n, and n0 respectively).

The derivation of the weakly singular form of the derivative equation follows the traditional

derivation of the conventional boundary integral equation. The point P0 is placed on the boundary

of the domain Ω and the domain is enlarged about this point to include a semicircular or hemi-

spherical region of some small radius ε > 0. The limits of the integral expression (7.3) over each

part of the enlarged domain are then considered in detail asε → 0, with judicious application of

the above identities (Tomlinson et al. 1996, Liu & Rudolphi 1991). The result is

∫

∂Ω

∂2G(P, P0)

∂n∂n0

(

φ(P )− φ(P0)−
∂φ(P0)

∂xk

)

dΓ(P )

=
∫

∂Ω
nk

∂G(P, P0)

∂n0

(
∂φ(P )

∂n
− ∂φ(P0)

∂xk

nk(P )

)

dΓ(P ) (7.7)

where now P0 ∈ ∂Ω (the singular point), n is a unit outward normal on ∂Ω, n0 is an arbitrary unit

vector at P0 (the direction in which (7.1) was differentiated) and a sum over k is implied.
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7.1.1 Discretisation

The surface is discretised into “boundary elements” i.e., Ω =

M⋃

m=1

Ωm. Introducing cubic Hermite

interpolation for φ, and, as above, approximating
∂φ(P )

∂n
by Nα

(
∂φ(P )

∂n

)

α

and also interpolating

the geometry as xk = Mαx
α
k for some set of basis functions {Mα} (these will be taken to be cubic

Hermite, but for now we leave these general), Equation (7.7) becomes

M∑

m=1

∫

Γm

∂2G(P, P0)

∂n∂n0

(

Ψi
αφ

α
i − φ(P0)−

∂φ(P0)

∂xk

(Mαx
α
k − x0k)

)

dΓ(P )

=
M∑

m=1

∫

Γm

∂G(P, P0)

∂n0

(

Nα

∂φα

∂n
− ∂φ(P0)

∂xk

nk(P )

)

dΓ(P ) (7.8)

or, in terms of the local ξ coordinate

M∑

m=1

∫ 1

0

∂2G(ξ, P0)

∂n∂n0

(

Ψi
α(ξ)φ,

α
i −φ(P0)−

∂φ(P0)

∂xk

(Mα(ξ)x
α
k − x0k)

)

|J(ξ)dξ

=

M∑

m=1

∫ 1

0

∂G(ξ, P0)

∂n0

(

Nα(ξ)
∂φα

∂n
− ∂φ(P0)

∂xk

nk(ξ)

)

|J(ξ)dξ (7.9)

As with the conventional boundary integral equation, P0 is located at each of the solution variable

nodes in turn.

The global unknowns we are dealing with are nodal values of φ,
∂φ

∂s
and φ,

∂φ

∂n
(and also ∂2φ

∂s∂n

if cubic Hermite interpolation is used for the normal derivative). By adopting a local coordinate

system (s, n) [or (ξ, n)] one has, by the chain rule,

∂φ

∂xk

=

(
∂φ

∂σl

∂σl

∂xk

)

(l = 1, 2) (7.10)

where (σ1, σ2) = (s, n) [or (s1, s2, n) in three dimensions].
∂σl

∂xk

can either be obtained exactly

(as in some of the test problems) or, more generally, by inverting the matrix

[
∂xk

∂σl

]

. For a cubic

Hermite geometric mesh,
∂xk

∂s
are known nodal values (either entered or calculated as part of the

mesh fitting) so the matrix entries are all known. The use of (7.10) in (7.9) yields an integral

expression, which, with the application of element scale factors (if required), involves only the

required nodal unknowns as coefficients. We concentrate now on obtaining expressions suitable

for numerical computation for these coefficients. As in (Liu & Rizzo 1992) two separate cases

must be considered - that for which P0 is contained in the element Γm being considered, and that

for which P0 is removed from the current element Γm. For each case, we investigate both integrals

of (7.9).
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Case 1: P0 /∈ Γm

In this case the integrands of both integrals in (7.9) are nonsingular and both integrals exist. The

first integral can be written as

φ,αi

∫ 1

0

∂2G(ξ, P0)

∂n∂n0

Ψi
α(ξ)|J(ξ)|dξ − φ(P0)

∫ 1

0

∂2G(ξ, P0)

∂n∂n0

|J(ξ)|dξ

− ∂φ

∂σl

(P0)
∂σl

∂xk

(P0)

∫ 1

0

∂2G(ξ, P0)

∂n∂n0
(Mα(ξ)x

α
k − x0k)|J(ξ)|dξ(7.11)

Since φ,αi is either a nodal value of φ or
∂φ

∂ξ
, multiplication of the appropriate first integrals by

element scale factors generates coefficients of nodal values of
∂φ

∂s
. Each integral expression is

(7.11) is regular and standard Gaussian quadrature can be used to evaluate these.

The second integral can be written as

∂φα

∂n

∫ 1

0

∂2G(ξ, P0)

∂n∂n0

Nα(ξ)|J(ξ)|dξ −
∂φ

∂σl

(P0)
∂σl

∂xk

(P0)

∫ 1

0

∂G(ξ, P0)

∂n∂n0

nk(ξ)|J(ξ)|dξ (7.12)

and again each integral can be evaluated by standard Gaussian quadrature. A more efficient group-

ing of the integrals in (7.11) and (7.12) can be obtained by grouping like coefficients, resulting in

some computational saving.

Case 2: P0 ∈ Γm

In this case special care must be exercised to retain the weakly singular nature of the integral

expressions in (7.9). A straightforward application of either (7.11) or (7.12) will result in divergent

integrals. We identify with β the local node on element Γm corresponding to P0. Keeping the

appropriate coefficients grouped, we have from the first integral of (7.9)

φ(P0)

∫ 1

0

∂2G(ξ, P0)

∂n∂n0

(Ψ0
β(ξ)− 1)|J(ξ)|dξ +φ,

α{α6=β}
i

∫ 1

0
∂2G(ξ,P0)
∂n∂n0

(Ψi
α(ξ)− 1)|J(ξ)|dξ

+
∂φ

∂s
(P0)

∫ 1

0

∂2G(ξ, P0)

∂n∂n0

[
∂s

∂ξ
(P0)Ψ

1
β(ξ) − ∂s

∂xk

(P0)(Mα(ξ)x
α
k − x0k)

]

|J(ξ)|dξ

−∂φ

∂n
(P0)

∫ 1

0

∂2G(ξ, P0)

∂n∂n0

∂n

∂xk

(P0) (Mα(ξ)x
α
k − x0k) |J(ξ)|dξ (7.13)

Here we have explicitly included the element scale factors, and the second integral involves a sum

over α with α 6= β. With this grouping, all integrals are at most weakly singular and amenable

to numerical integration. The second integral of (7.9) is more straightforward, although certain
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groupings must still be retained. The appropriate expression for numerical integration is

∂φ

∂n
(P0)

∫ 1

0
∂G(ξ,P0)

∂n0

[

Nβ(ξ)−
∂n

∂xk

(P0)nk(ξ)

]

|J(ξ)|dξ

− ∂φαα 6= β

∂n

∫ 1

0

∂G(ξ, P0)

∂n0
Nα(ξ)|J(ξ)|dξ

− ∂φ

∂s
(P0)

∫ 1

0

∂G(ξ, P0)

∂n0

∂s

∂xk

(P0)nk(ξ)|J(ξ)|dξ(7.14)

The above equations provide numerically well-behaved expressions for the coefficients of the dis-

cretised derivative boundary integral equation. It only remains to specify the direction(s) of n0.

After extensive testing (Tomlinson et al. 1996) we concluded that the direction of differentiation

should be that of s (i.e., tangential) for two-dimensional problems (where one extra equation is

required) and for three-dimensional problems, one should differentiate in both the s1 and s2 direc-

tions (and set the cross derivative coefficients to zero).

7.2 Three-dimensional element splitting

If the singular point P0 is contained in the current element then the element is sub- divided in local

(ξ1, ξ2) space according to the location of P0. Each of these triangular elements is then transformed

to a regular four-noded element in another space [say (s, t) space] in such a way that the Jacobian

of this last transformation cancels the dominant singularity in the integrand (which is O
(
1
r

)
in the

original space, where r is the distance from the singular point P0). The numerical integrations

are then performed over the elements in the (s, t) space. We use the following subdivisions and

transformations. In each case the absolute value of the Jacobian of the transformation for element

A is s and for element B is t.

7.2.1 Po at local node 1

Sub-divide from local node 1 to 4, giving two elements A and B.

Transformation for element A:

s = ξ1 t = ξ2
ξ1

(inverse mapping is ξ1 = s ξ2 = st)

Transformation for element B:

s = ξ2
ξ1

t = ξ2 (inverse mapping is ξ1 = st ξ2 = t)

7.2.2 Po at local node 2

Sub-divide from local node 2 to 3. Element A contains local nodes 1, 2 and 3.

Transformation for element A:

s = 1− ξ1 t = 1−ξ1−ξ2
1−ξ1

(inverse mapping is ξ1 = 1− s ξ2 = s(1− t))
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sub-element
B

sub-element
A

21
P0

s = ξ1

t =
ξ2
ξ1

s =
ξ1
ξ2

t = ξ2

3 4

ξ2

ξ1

1 1
s

t

1

1
s

2

4

3 4

t

FIGURE 7.1: The element splitting used when P0 is at local node 1. The individual

transformations yield Jacobians that reduce the order of the singularity in the otherwise singular

boundary element integrals.
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Transformation for element B:

s = 1−ξ1
ξ2

t = ξ2 (inverse mapping is ξ1 = 1− st ξ2 = t)

7.2.3 Po at local node 3

Sub-divide from local node 2 to 3. Element A contains local nodes 2,3 and 4.

Transformation for element A:

s = ξ1 t = 1−ξ2
ξ1

(inverse mapping is ξ1 = s ξ2 = 1− st)

Transformation for element B:

s = 1−ξ1−ξ2
1−ξ2

t = 1− ξ2 (inverse mapping is ξ1 = t(1− s) ξ2 = 1− t)

7.2.4 Po at local node 4

Sub-divide from local node 1 to 4. Element A contains local nodes 1,3 and 4.

Transformation for element A:

s = 1− ξ1 t = 1−ξ2
1−ξ1

(inverse mapping is ξ1 = 1− s ξ2 = 1− st)

Transformation for element B:

s = 1−ξ1
1−ξ2

t = 1− ξ2 (inverse mapping is ξ1 = 1− st ξ2 = 1− t)

7.3 Hermite “Simplexes”

We describe here the special three-noded Hermite elements that have been used to close a cubic

Hermite surface in three-dimensional space. We describe the two special elements that were used

- one in which the derivatives come to a point at local node 3 (the top), and one in which the

derivatives come together at local node 1 (the bottom).

7.3.1 Apex at local node 3

With reference to Figure 7.2 a, we construct the appropriate two-dimensional interpolation func-

tions via a tensor product (instead of using area functions, which are commonly used in three-noded

elements). The tensor product formulation requires a description of the basis functions to be used

in each direction. We use standard Hermite interlation in the ξ1 direction, so that any standard

cubic Hermite element sharing this edge maintains consistent interpolation. In the ξ2 direction we

require the interpolation function to interpolate nodal values of function and derivative at the first

node, and only the value of the function at the second node (i.e., we have dropped the arclength

derivative at the second node since it is no longer uniquely defined). Thus we require

x(ξ2) = Ψ1(ξ2)x1 +Ψ2(ξ2)
∂x1

∂ξ2
+Ψ3(ξ2)x3
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FIGURE 7.2: The two Hermite “simplexes” and their connection to standard cubic Hermite

elements.

where

Ψ1(0) = 1, Ψ1(1) = 0,
∂Ψ1

∂ξ2
(0) = 0

Ψ2(0) = 0, Ψ2(1) = 0,
∂Ψ2

∂ξ2
(0) = 1

Ψ3(0) = 0, Ψ3(1) = 1,
∂Ψ3

∂ξ2
(0) = 0

These conditions yield

Ψ1(ξ) = 1− ξ2

Ψ2(ξ) = ξ − ξ2

Ψ3(ξ) = ξ2

and the appropriate two-dimensional basis function is obtained from a tensor product of the stan-

dard Hermite basis function and the family given above.

7.3.2 Apex at local node 1

Again, with reference to Figure 7.2 b, we construct the appropriate two-dimensional interpolation

functions via a tensor product with standard Hermite interpolation in the ξ1 direction. In the ξ2
direction we require the interpolation function to interpolate nodal values of function at the first
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node, and the value of the function and derivative at the second node. Thus we require

x(ξ2) = ζ1(ξ2)x1 + ζ2(ξ2)
∂x3

∂ξ2
+ ζ3(ξ2)x3

where

ζ1(0) = 1, ζ1(1) = 0,
∂ζ1
∂ξ2

(1) = 0

ζ2(0) = 0, ζ2(1) = 0,
∂ζ2
∂ξ2

(1) = 1

ζ3(0) = 0, ζ3(1) = 1,
∂ζ3
∂ξ2

(1) = 0

These conditions yield

ζ1(ξ) = (ξ − 1)2

ζ2(ξ) = ξ2 − ξ

ζ3(ξ) = 2ξ − ξ2

and the appropriate two-dimensional basis function are obtained as above.





Chapter 8

Domain Integrals in the BEM

8.1 Achieving a Boundary Integral Formulation

The principal advantage of the BEM over other numerical methods is the ability to reduce the

problem dimension by one. This property is advantagous as it reduces the size of the solution

system leading to improved computational efficiency. This reduction of dimension also eases the

burden on the engineer as it is only necessary to construct a boundary mesh to implement the BEM.

To achieve this reduction of dimension it is necessary to formulate the governing equation as a

boundary integral equation. To achieve a boundary integral formulation it is necessary to find an

appropriate reciprocity relationship for the problem and to determine an appropriate fundamental

solution. If either of these requirements cannot be satisfied then a boundary integral formulation

cannot be achieved. The most common difficulty in applying the BEM is in determining an appro-

priate fundamental solution.

A linear differential equation can be expressed in operator form as Lu = γ where L is a linear

operator, γ is an inhomogeneous source term and u is the dependent variable. The fundamental

solution for this equation is a solution of

L∗ω (x, ξ) + δ (ξ) = 0 (8.1)

where * indicates the adjoint of the operator L and δ is the Dirac delta function. No specific

boundary conditions are prescribed but in some cases regularity conditions at infinity need to be

satisfied. The fundamental solution is a Green’s function which is not required to satisfy any

boundary conditions and is therefore also commonly termed the free-space Green’s function.

The mathematical theory required to determine the fundamental solution of a constant coef-

ficient PDE is well-developed and has been used successfully to determine the fundamental so-

lutions for a wide range of constant coefficient equations (Brebbia & Walker 1980) (Clements &

Rizzo 1978) (Ortner 1987). Fundamental solutions are known and have been published for many

of the most important equations in engineering such as Laplace’s equation, the diffusion equation

and the wave equation (Brebbia, Telles & Wrobel 1984a). However, by no means can it be guaran-

teed that the fundamental solution to a specific differential equation is known. In particular, PDEs

with variable coefficients do not, in general, have known fundamental solutions. If the fundamental

solution to an operator cannot be found then domain integrals cannot be completely removed from

the integral formulation. Domain integrals will also arise for inhomogeneous equations.
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Wu (1985) argued that the BEM has several advantages over other numerical methods which

justify its use for many practical problems - even in cases where domain integration is required.

He argued that for problems such as flow problems a wide range of phenomena are described by

the same governing equations. What distinguishes these phenomena is the boundary conditions of

the problem. For this reason accurate description of the boundary conditions is vital for solution

accuracy. The BEM generates a formulation involving both the dependent variable u and the flux

q. This allows flux boundary conditions to be applied directly which cannot be achieved in either

the finite element or finite difference methods.

Another advantage of the BEM over other numerical methods is that it allows an explicit ex-

pression for the solution at an internal point. This allows a problem to be subdivided into a number

of zones for which the BEM can be applied individually. This zoning approach is suited to prob-

lems with significantly different length scales or different properties in different areas.

Domain integration can be simply and accurately performed in the BEM. However, the pres-

ence of domain integrals in the BEM formulation negates one of the principal advantages of the

BEM in that the problem dimension is no longer reduced by one. Several methods have been de-

veloped which allow domain integrals to be expressed as equivalent boundary integrals. In this

section these methods will be discussed.

8.2 Removing Domain Integrals due to Inhomogeneous Terms

Inhomogeneous PDEs occur for a large number of physical problems. An inhomogeneous term

may arise due to a number of factors including a source term, a body force term, or due to ini-

tial conditions in time-dependent problems. An inhomogeneous linear PDE can be expressed in

operator form as Lu = γ where γ is a known function of position or a non-zero constant. If the

fundamental solution is known for the operator L, the resulting BEM formulation will be

Hu−Gq = −
∫

Ω

γω dΩ (8.2)

The domain integral in this formulation does not involve any unknowns so domain integration can

be used directly to solve this equation. This requires discretising the domain into internal cells

in much the same way as for the finite element method. As the domain integral does not involve

any unknown values accurate results can generally be achieved using a fairly coarse mesh. This

method is simple and has been shown to produce accurate results (Brebbia et al. 1984a). This

approach, however, requires a domain discretisation and a numerical domain integration procedure

which reduces the attraction of the BEM over domain-based numerical methods.

8.2.1 The Galerkin Vector technique

For some particular forms of the inhomogeneous function γ the domain integral can be transformed

directly into boundary integrals.

Consider the Poisson equation ∇2u = γ. Applying the BEM gives an equation of the form of
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Equation (8.2). Using Green’s second identity

∫

Ω

(
γ∇2v − v∇2γ

)
dΩ =

∫

Γ

(

γ
∂v

∂n
− v

∂γ

∂n

)

dΓ (8.3)

domain integration can be avoided for certain forms of γ. If a v can be found which satisfies

∇2v = ω, where ω is the fundamental solution of Laplace’s equation, then for the specific case of

γ being harmonic (∇2γ = 0) Green’s second identity can be reduced to

∫

Ω

γω dΩ =

∫

Γ

(

γ
∂v

∂n
− v

∂γ

∂n

)

dΓ (8.4)

Therefore if a Galerkin vector can be found and γ is harmonic the domain integral in Equation (8.2)

can be expressed as equivalent boundary integrals.

Fairweather, Rizzo, Shippy & Wu (1979) determined the Galerkin vector for the two-dimensional

Poisson equation and Monaco & Rangogni (1982) determined the Galerkin vector for the three-

dimensional Poisson equation. Danson (1981) showed how this method can be applied successfully

for a number of physical problems involving linear isotropic problems with body forces. He con-

sidered the practical cases where the body force term arose due to either a constant gravitational

load, rotation about a fixed axis or steady-state thermal loading. In each of these cases the domain

integral can be expressed as equivalent boundary integrals.

This Galerkin vector approach provides a simple method of expressing domain integrals as

equivalent boundary integrals. Unfortunately, it only applies to specific forms of the inhomoge-

neous term γ (i.e., γ is required to be harmonic).

8.2.2 The Monte Carlo method

Domain discretisation could be avoided by using a Monte Carlo technique. This technique approx-

imates a domain integral as a sum of the integrand at a number of random points. Specifically, in

two dimensions, a domain integral I is approximated as

I ≈ A

N

N∑

i=1

f (xi, yi) (8.5)

where f (xi, yi) is the value of the integrand at random point (xi, yi), N is the number of random

points used and A is the area of the region over which the integration is performed. This approxi-

mation allows a domain integral to be approximated by a summation over a set of random points

so domain integration can be performed without requiring a domain mesh. This method has the

secondary advantage of allowing the integration to be performed over a simple geometry enclosing

the problem domain - if a random point is not in the problem domain its contribution is ignored.

The method was proposed by Gipson (1987). Gipson has successfully applied this method to a

number of Poisson-type problems. Unfortunately this method often proves to be computationally

expensive as a large number of integration points are needed for accurate domain integration.

Gipson argues however that, as this method removes the burden of preparing a domain mesh,
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the extra computational expense is justified.

8.2.3 Complementary Function-Particular Integral method

A more general approach can be developed using particular solutions. Consider the linear problem

Lu = γ. u can be considered as the sum of the complementary function uc, which is a solution of

the homogeneous equation Luc = 0, and a particular solution up which satisfies Lup = γ but is

not required to satisfy the boundary conditions of the problem. Applying BEM to the governing

equation using the expansion u = uc + up gives

Hu−Gq = Hup −Gqp (8.6)

If a particular solution up can be found, all values on the right-hand-side of Equation (8.6) are

known - reducing the problem to

Hu−Gq = d (8.7)

where d is a vector of known values. This linear system can be solved by applying boundary

conditions.

This approach can be applied in a situation where an analytic expression for a particular solu-

tion can be found. Unfortunately particular solutions are generally only known for simple operators

and for simple forms of γ. Alternatively an approximate particular solution could be calculated nu-

merically. Zheng, Coleman & Phan-Thien (1991) proposed a method where a particular solution

is determined by approximating the inhomogeneous source term using a global interpolation func-

tion. This approach is a special case of a more general method known as the dual reciprocity

boundary element method.

8.3 Domain Integrals Involving the Dependent Variable

Consider the linear homogeneous PDE Lu = 0. For many operators the fundamental solution to

the operator L may be unobtainable or may be in an unusable form. This is especially likely if L
involves variable coefficients for which case it has been shown that it is particularly difficult to find

a fundamental solution. Instead, a BEM formulation can be derived based on a related operator L̂
with known fundamental solution. A BEM formulation for Lu = 0 based on the operator L̂ will

be of the form

Hu−Gq = −
∫

Ω

(

L̂− L
)

uω dΩ (8.8)

where ω is the fundamental solution corresponding to the operator L̂. This integral equation is

similar to Equation (8.2). However in this case the domain integral term involves the dependent

variable u. This problem could be solved using domain integration where the internal nodes are

treated as formal problem unknowns.
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8.3.1 The Perturbation Boundary Element Method

Rangogni (1986) proposed solving variable coefficient PDEs by coupling the boundary element

method with a perturbation method. He considered the two-dimensional generalised Laplace equa-

tion

∇ · (κ (x, y)∇V (x, y)) = 0 (8.9)

Using the substitution V (x, y) = κ
−
1

2u (x, y) Equation (8.9) can be recast as a heterogeneous

Helmholtz equation

∇2u+ f (x, y)u = 0 (8.10)

where f is a known function of position.

Rangogni treated this equation as a perturbation about Laplace’s equation. He considered the

class of equations

∇2u+ εf (x, y)u = 0 where 0 ≤ ε ≤ 1 (8.11)

for which he sought a solution of the form

u = u0 + εu1 + ε2u2 + . . . =

∞∑

j=0

ujε
j (8.12)

Substituting Equation (8.12) into Equation (8.11) and grouping powers of ε gives

∇2u0 + ε
(
∇2u1 + fu0

)
+ ε2

(
∇2u2 + fu1

)
+ . . . = 0 (8.13)

A solution will only exist for all values of ε if the terms at each power of ε equal zero. This allows

Equation (8.13) to be treated as an infinite series of distinct problems which can be solved using

the boundary element method. u0 can be found by solving ∇2u0 = 0 which Rangogni assumes

will satisfy the boundary conditions of the original problem. Each successive uj can then be found

by solving a Poisson equation with homogeneous boundary conditions as uj−1 has been previously

determined. Rangogni used a domain discretisation to solve these Poisson problems.

Equation (8.10) is a particular member of this family of equations for which ε = 1. The

solution to Equation (8.10) is therefore given by

∞∑

j=0

uj . Rangogni reported that in practice this

series converged rapidly and in his numerical examples he achieved accurate results using only u0

and u1.

Rangogni (1991) extended this coupled perturbation - boundary element method to the general

second-order variable coefficient PDE

∇2u+ f (x, y)
∂u

∂x
+ g (x, y)

∂u

∂y
= h (x, y) (8.14)

He considered the family of equations

∇2u+ ε

[

f (x, y)
∂u

∂x
+ g (x, y)

∂u

∂y

]

= h (x, y) (0 ≤ ε ≤ 1) (8.15)
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Applying the perturbation method to this family of equations allows Equation (8.15) to be ex-

pressed as an infinite series of distinct Poisson equations which can be solved using the boundary

element method. Again Rangogni used an domain mesh to solve these Poisson equations. Ran-

gogni found that in practice convergence was rapid and accurate results were produced.

Gipson, Reible & Savant (1987) considered a class of hyperbolic and elliptic problems which

can be transformed into an inhomogeneous Helmholtz equation. They used the perturbation method

to recast this as an infinite sequence of Poisson equations. They avoided domain discretisation by

using a Monte Carlo integration technique (Gipson 1987) to evaluate the required domain integrals.

Lafe & Cheng (1987) used the perturbation method to solve steady-state groundwater flow

problems in heterogeneous aquifers. They showed the method produced accurate results for sim-

ply varying hydraulic conductivities with convergence after two or three terms. Lafe & Cheng

investigated the convergence of the perturbation method. They found that for rapidly varying hy-

draulic conductivity convergence is not guaranteed. From this investigation they concluded that

accurate results can be obtained so long as the hydraulic conductivity does not vary by more than

one order of magnitude within the solution domain. If the hydraulic conductivity variation is more

significant they recommend using the perturbation method in conjunction with a subregion tech-

nique so that the variation of conductivity within each subregion satisfies their requirements. This

process could become computationally expensive, particularly if convergence is not rapid, as the

solution of multiple subproblems will be required within each subregion.

8.3.2 The Multiple Reciprocity Method

The multiple reciprocity method (MRM) was initially proposed by Nowak (1987) for the solution

of transient heat conduction problems. Since then the method has been successfully applied to a

wide range of problems. The MRM can be viewed as a generalisation of the Galerkin vector ap-

proach. Instead of using one higher-order fundamental solution, the Galerkin vector, to convert the

remaining domain integrals to equivalent boundary integrals a series of higher-order fundamental

solutions is used.

Consider the Poisson equation

∇2u = b0 (8.16)

where b0 = b0 (x) is a known function of position. Applying BEM to this equation, using the

fundamental solution to the Laplace operator, gives

c (ξ) u (ξ) +

∫

Γ

u
∂ω0

∂n
dΓ +

∫

Ω

b0ω0 dΩ =

∫

Γ

ω0
∂u

∂n
dΓ (8.17)

where ω0 is the known fundamental solution to Laplace’s equation applied at point ξ. To avoid

domain discretisation the domain integral in Equation (8.17) needs to be expressed as equivalent

boundary integrals. Using MRM this is achieved by defining a higher-order fundamental solution

ω1 such that

∇2ω1 = ω0 (8.18)

Using this higher-order fundamental solution the domain integral in Equation (8.17) can be written



8.3 DOMAIN INTEGRALS INVOLVING THE DEPENDENT VARIABLE 129

as
∫

Ω

b0ω0 dΩ =

∫

Ω

b0∇2ω1 dΩ (8.19)

or
∫

Ω

b0ω0 dΩ =

∫

Γ

(

u
∂ω1

∂n
− ω1

∂u

∂n

)

dΓ +

∫

Ω

ω1∇2b0 dΩ (8.20)

This formulation has generated a new domain integral. b0 is a known function so we can introduce

a new function b1 which can be determined analytically from the relationship

b1 = ∇2b0 (8.21)

giving
∫

Ω

ω1∇2b0 dΩ =

∫

Ω

ω1b1 dΩ (8.22)

This process can be repeated by introducing a new higher-order fundamental solution ω2 such that

∇2ω2 = ω1 (8.23)

and continuing until convergence is reached.

This procedure is based on the recurrence relationships

bj+1 = ∇2bj for j = 0, 1, 2, . . . (8.24)

∇2ωj+1 = ωj for j = 0, 1, 2, . . . (8.25)

Using these recurrence relationships gives the boundary integral formulation

c (ξ) u (ξ) +

∫

Γ

(

u
∂ω0

∂n
− ω0

∂u

∂n

)

dΓ +

∞∑

j=0

∫

Γ

(

bj
∂ωj+1

∂n
− ωj+1

∂bj
∂n

)

dΓ = 0 (8.26)

which is an exact formulation if the infinite series converges. Errors are only introduced at the

stage of boundary discretisation.

Introducing interpolattion functions and discretising the boundary gives the matrix system

H0u−G0q =

∞∑

j=0

(HJ+1pj −GJ+1rj) (8.27)

where HJ+1 and GJ+1 are influence coefficient matrices corresponding to the higher-order fun-

damental solutions and pj and rj contain the nodal values of bj and its normal derivative.

The MRM can be applied based on operators other than the Laplace operator. This approach

relies on knowledge of the higher-order fundamental solutions necessary for application of the

method. These solutions have been determined and successfully used for the Laplace operator

in both two and three dimensions but the extension of the method to other equation types needs
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further research. Itagaki & Brebbia (1993) have determined the higher order fundamental solutions

for the two-dimensional modified Helmholtz equation.

The MRM can be extended to other equations by allowing the forcing function b0 to be a general

function such that b0 = b0 (x, u, t). The MRM will be restricted to cases where the recurrence

relationships - Equations (8.24) and (8.25) - can be employed. Brebbia & Nowak (1989) have

applied the MRM to the Helmholtz equation ∇2u+ κ2u = 0 where b0 = −κ2u and the recurrence

relationship defined by Equation (8.24) becomes simply

uj+1 = ∇2uj = −κ2ju (8.28)

In this case the boundary integral formulation will be

c (ξ) u (ξ) +
∞∑

j=0

∫

Γ

κ2j

(

u
∂ωj

∂n
− ωj

∂u

∂n

)

dΓ = 0 (8.29)

8.3.3 The Dual Reciprocity Boundary Element Method

Equation Derivation

The dual reciprocity boundary element method (DR-BEM) was developed to avoid the need for

domain integration in cases where the fundamental solution of the governing differential equation

is unknown or is impractical to apply. Instead the DR-BEM is applied using an appropriate related

operator with known fundamental solution. The most common choice is the Laplace operator

(Partridge, Brebbia & Wrobel 1992) and in this chapter the DR-BEM will be illustrated for this

choice.

Consider a second-order PDE which can be expressed in the form

∇2u = b (8.30)

The forcing function b can be completely general. If b = b (x) then b is a known function of posi-

tion and the differential equation described is simply the Poisson equation. For potential problems

b = b (x, u) and for transient problems b = b (x, u, t). Applying the BEM to Equation (8.30) will

give

Hu−Gq = −
∫

Ω

bω dΩ (8.31)

where ω is the known fundamental solution to Laplace’s equation. The aim of the DR-BEM is to

express the domain integral due to the forcing function b as equivalent boundary integrals.

The DR-BEM uses the idea of approximating b using interpolation functions. A global approx-

imation to b of the form

b =
M∑

j=1

αjfj (8.32)

is proposed. αj are unknown coefficients and fj are approximating functions used in the interpo-
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lation and are generally chosen to be functions of the source point and the field point of the fun-

damental solution. The approximating functions fj are applied at M different collocation points

- called poles - generally most, but not all, of which are located on the boundary of the problem

domain.

As discussed in the previous chapter the solution to a linear PDE Lu = γ can be constructed as

the sum of a complimentary function uc (which satisfies the homogeneous equation Luc = 0) and a

particular solution up to the equation Lup = γ. Instead of using a single particular solution, which

may be difficult to determine, the DR-BEM employs a series of particular solutions ûj which are

related to the approximating functions fj as shown in Equation (8.33).

∇2ûj = fj j = 1, . . . ,M (8.33)

By substituting Equations (8.32) and (8.33) into Equation (8.30) the forcing function b is approxi-

mated by a weighted summation of particular solutions to the Poisson equation.

∇2u =

M∑

j=1

αj∇2ûj (8.34)

The DR-BEM essentially constructs an approximate particular solution to the governing PDE as a

summation of localised particular solutions.

With the governing equation rewritten in the form of Equation (8.34) the standard boundary

element approach can be applied. Equation (8.34) is multiplied by a weighting function ω and

integrated over the domain. Green’s theorem is applied twice and the fundamental solution of the

Laplacian is used to remove the remaining domain integrals. The name dual reciprocity BEM is

derived from the application of reciprocity relationships to both sides of Equation (8.34). After

applying these steps Equation (8.35) is obtained, where the fundamental solution pole is applied at

point ξ.

c (ξ)u (ξ) +

∫

Γ

(

u
∂ω

∂n
− ω

∂u

∂n

)

dΓ

=

M∑

j=1

αj



c (ξ)uj (ξ) +

∫

Γ

(

ûj

∂ω

∂n
− ω

∂hatuj

∂n

)

dΓ



 (8.35)

In implementing a numerical solution of this equation similar steps are taken as for the standard

BEM. The boundary is discretised into elements and interpolation functions are introduced to ap-

proximate the dependent variable within each element.

The form of each ûj is known from Equation (8.33) once the approximating functions fj have

been defined. It is not necessary to use interpolation functions to approximate each ûj . However

by using the same interpolation functions to approximate u and ûj the numerical implementation

will generate the same matrices H and G on both sides of Equation (8.35). The error generated

by approximating each ûj in this manner has been found to be small and can be justified by the

improved computational efficiency of the method (Partridge et al. 1992).
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The application of this method results in the system

Hu−Gq =
N+I∑

j=1

αj (Hûj −Gq̂j) (8.36)

where the M poles were chosen to be the N boundary nodes plus I internal points so that M =
N + I . Although it is not generally necessary to include poles at internal points it has been found

that in general improved accuracy is achieved by doing so (Nowak & Partridge 1992). It has

been shown that for many problems (Partridge et al. 1992) (Huang & Cruse 1993) using boundary

points only in this procedure is insufficient to define the problem. In general using internal points

is likely to improve the solution accuracy as it increases the number of degrees of freedom. No

theory has been developed of how many internal collocation points should be used for optimal

accuracy, or where these points should be positioned within the problem domain. Using internal

poles in this interpolation does not require domain discretisation - it is only necessary to specify

the coordinates of the internal collocation points. The internal points can be chosen to be locations

where the solution is of interest.

The ûj and q̂j vectors can be treated as columns of the matrices Û and Q̂ respectively. This

allows Equation (8.36) to be rewritten as

Hu−Gq =
(

HÛ −GQ̂
)

α (8.37)

where α is a vector containing the nodal values of α. To solve this system it is necessary to evaluate

α. α is defined by Equation (8.32) which, for the nodal values, can be expressed in matrix form as

b = Fα. If the F matrix is nonsingular this expression can be rearranged to give Equation (8.38)

which provides an explicit expression for α.

α = F−1b (8.38)

Including this explicit expression for α in Equation (8.37) gives

Hu−Gq =
(

HÛ −GQ̂
)

F−1b (8.39)

The approach taken to solve this equation will depend on the form of b.

The Approximating Function f

The accuracy of the DR-BEM hinges on the accuracy of the global approximation to the forcing

function b (defined by Equation (8.32)). Therefore the choice of the approximating functions fj is

a key consideration when implementing the DR-BEM. The only requirement so far prescribed on

the form of the approximating functions fj is that the F matrix generated should be nonsingular

and that the related particular solutions ûj can be determined and can be expressed in a practical

closed form. Some work has been conducted into investigating what form of fj should be used in

a given situation to provide the highest accuracy and computational efficiency.

Usually a form of fj is defined and this can be used, applying Equation (8.33), to specify û
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and q̂. The fundamental solution of Laplace’s equation is ω (x, ξ) = − 1

2π
ln r in two-dimensional

space and ω (x, ξ) =
1

4πr
in three-dimensional space - where r is the Euclidean distance between

the field point x and the source point ξ of the fundamental solution. Due to the dependence of this

fundamental solution only on r the approximating function is generally chosen to be some radial

function i.e., fj = fj (r). Several other options for fj have been tried (Partridge et al. 1992) but it

has been found that in general the most accurate results were generated using some radial function.

For both two and three-dimensional problems Wrobel, Brebbia & Nardini (1986) recommended

choosing fj from the series

fj = 1 + rj + r2j + . . .+ rmj (8.40)

where rj is the distance between the field point (node j) and the DR-BEM collocation point (node

i). They showed that accurate results can be achieved using some combination of terms from this

series. Generally the same approximating function fj is used at all the collocation points so in this

thesis, for simplicity, the form of approximating functions fj will be referred to by a single f .

Choosing f to be a function of only one variable simplifies the process of determining û and q̂.

For two-dimensional problems, if f = f (r) then the relationship

∇2û = f (r) (8.41)

can be reduced to the ordinary differential equation

d2û

dr2
+

1

r

dû

dr
= f (8.42)

Using f defined by Equation (8.40) the corresponding forms of û and q̂, for two-dimensional

problems, can be shown to be

û =
r2

4
+

r3

9
+ . . .+

rm+2

(m+ 2)2
(8.43)

q̂ =

(

rx
∂x

∂n
+ ry

∂y

∂n

)(
1

2
+

r

3
+ . . .+

rm

m+ 2

)

(8.44)

where rx = xj − xi and ry = yj − yi.
Any combination of terms from Equation (8.40) can be used for specifying f . It has been found

that in general including higher-order terms leads to little improvement in accuracy (Partridge

et al. 1992). The most commonly used form is f = 1+ r as this approximation will generally give

accurate results with greater computational efficiency than other choices.

Equation (8.40) was recommended as a basis for the approximating function f due to the

particular form of the fundamental solution of Laplace’s equation and its dependence on r only. If

a different operator is used as the basis of the DR-BEM then it is likely a different form of f will

be more appropriate. The choice of f in this case will be discussed in Section 8.3.3.

The performance of the DR-BEM hinges on the choice of the approximating function f . The

theory of how to determine the best approximating function is therefore a vital component of

the DR-BEM. Unfortunately the approximating function has generally been chosen and used in a

rather ad-hoc manner. Recently some more formal analysis of the use of approximating functions
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has been undertaken.

Golberg & Chen (1994) argued that a formal analysis of the approximating function f can be

undertaken using the theory of radial basis functions. Radial basis functions are a generalisation

of cubic splines in multi-dimensions. Cubic splines are known to be optimal for one-dimensional

interpolation. Therefore, rather than being an arbitrary choice, it seems that choosing f to be

a radial function is a logical extension for two or three-dimensional problems. Golberg & Chen

showed that, for the Poisson equation, choosing f to be a radial basis function ensures convergence

of the DR-BEM.

They also demonstrated that f = 1 + r is a specific member of the group of radial basis

functions. The theory of using radial basis functions for multi-dimensional approximation is fairly

advanced. It has been shown that f = r is optimal for three-dimensional problems which justifies

the use of f = 1 + r when applying the DR-BEM to three-dimensional problems - the constant

is included to ensure a non-zero diagonal for F . However for two-dimensional problems it has

been shown that optimal approximation is attained using the thin plate spline f = r2logr. This

observation lead Golberg & Chen to suggest that choosing f to be a thin plate spline may improve

the accuracy of the DR-BEM in two dimensions. Recently Golberg (1995) has published a review

of the DR-BEM concentrating on developments since 1990 concerning the numerical evaluation

of particular solutions.

Inhomogeneous Equations

If the forcing function b is a function of position only then the differential equation under consid-

eration is simply Poisson’s equation. In this case it is not necessary to invert the F matrix as α can

simply be calculated from b = Fα using Gaussian elimination. Equation (8.39) can be rewritten

as

Hu−Gq = d where d =
(

HÛ −GQ̂
)

α (8.45)

By applying boundary conditions Equation (8.45) can be reduced to a linear system Ax = τ

which can be solved to give the unknown nodal values of u and q.

Zheng et al. (1991) and Coleman, Tullock & Phan-Thien (1991) have proposed a method which

uses a global shape function to construct an approximate particular solution. As discussed by

Polyzos, Dassios & Beskos (1994) this method is essentially equivalent to the DR-BEM. However,

Zheng et al. and Coleman et al. suggested several alternative ways of determining the unknown

coefficients αj for inhomogeneous equations. Zheng et al. (1991) used a least-squares method

where they minimised the sum of squares

S =

M∑

m=1

(

b (rm)−
N∑

j=1

αjfj (rm)

)

(8.46)

using singular value decomposition. For large systems they found the computational efficiency

could be improved by employing the conjugate gradient method. Coleman et al. (1991) success-

fully solved inhomogeneous potential and elasticity problems which are governed by operators

other than the Laplacian.
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Elliptic Problems

If b is a function of the dependent variable then α will also be a function of the dependent variable.

Consider, for example, the linear second-order differential equation

∇2u+ u = 0 (8.47)

In this case b = −u so α = F−1
−u. Applying the DR-BEM to Equation (8.47), based on the

fundamental solution to Laplace’s equation, gives

Hu−Gq = −
(

HÛ −GQ̂
)

F−1u (8.48)

which can be rearranged to give

(H + S)u = Gq where S =
(

HÛ −GQ̂
)

F−1 (8.49)

Again, by applying boundary conditions Equation (8.49) can be reduced to a linear system AX =
τ which can be solved to determine the unknown nodal values.

Due to the presence of the fully-populated F −1 matrix in Equation (8.49) it is not possible to

solve the boundary problem and internal problem separately. Instead the solution can be treated as

a coupled problem and the solutions at boundary and internal nodes are generated simultaneously.

Derivative Terms The DR-BEM can also be applied for elliptic problems where b involves

derivatives of the dependent variable (Partridge et al. 1992). Consider, for example, the differ-

ential equation

∇2u+
∂u

∂x
= 0 (8.50)

In this case applying DR-BEM, using the Laplace fundamental solution, gives

Hu−Gq = −
(

HÛ −GQ̂
)

F−1∂u

∂x
(8.51)

To solve this problem it is necessary to relate the nodal values of u to the nodal values of
∂u

∂x
. This

is achieved by using interpolation functions to approximate u in a similar manner as was used to

approximate b in Equation (8.32). A global approximation function of the form

u =

M∑

j=1

φj (x, y)βj (8.52)

can be used to approximate u where φj are the chosen interpolation functions and βj are the un-

known coefficients. In system form this can be expressed as

u = Φβ (8.53)
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Although it is not necessary, equating Φ to F improves the computational efficiency of the method

as only one matrix inversion procedure is required. Differentiating Equation (8.53) gives

∂u

∂x
=

∂Φ

∂X
β (8.54)

Choosing Φ = F and inverting Equation (8.53) to give an explicit expression for β allows Equa-

tion (8.54) to be rewritten as
∂u

∂x
=

∂F

∂X
F−1u (8.55)

Equation (8.39) can now be rewritten as

(H +R)u = Gq where R =
(

HÛ −GQ̂
)

F−1 ∂F

∂X
F−1 (8.56)

By applying boundary conditions Equation (8.56) can be reduced to a linear system which can be

solved to give the unknown nodal values.

As mentioned earlier, the approximating function f is generally chosen to be f = 1 + r. This

can lead to numerical problems if derivative terms are included in the forcing function b. As shown

in Equation (8.55) derivative terms require derivatives of f to be evaluated. For example, evaluating

the
∂F

∂X
matrix requires calculation of

∂f

∂x
. Using the approximating function f = 1 + r gives

∂f

∂x
=

∂f

∂r

∂r

∂x
=

∂f

∂r

rx
r

(8.57)

This derivative function can become singular, so - as shown by Zhang (1993) - significant numerical

error may result. This will especially be the case in problems where collocation points are located

close together.

Zhang (1993) suggested two possibilities for avoiding this problem. The first suggestion in-

volved using a mapping procedure to map the governing equation to an equation without convec-

tive terms. This method was shown to produce accurate results but is somewhat cumbersome and

can only be applied to linear problems. A simpler approach is to choose an approximating func-

tion which does not lead to singularities for convective terms. Zhang recommended use of either

f = 1+ r3 or f = 1+ r2+ r3. These approximating functions produce accurate results and can be

simply applied for both linear and nonlinear problems. Zhang recommended the adoption of these

approximating functions for all use of the DR-BEM.

The same idea of using Equation (8.53) to allow nodal values of u to be associated to its

derivatives can be applied to extend the DR-BEM to cases involving higher-order derivatives or

cross derivatives of the dependent variable. Appropriate approximating functions need to be chosen

to avoid the problem of singularities.

Variable Coefficients The DR-BEM can be readily extended to equations with variable coeffi-

cients. Consider the variable coefficient Helmholtz equation

∇2u+ κ (x) u = 0 (8.58)
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where κ is a function of position - κ = κ (x, y) in two dimensions. If the DR-BEM is applied using

the known fundamental solution to the Laplace operator then the forcing function is b = −κu.

Applying the DR-BEM gives

Hu−Gq =
(

HÛ −GQ̂
)

F−1b (8.59)

where b is a vector of the nodal values of the forcing function b. The relationship b = −κu can be

written in matrix form as b = −Ku where K is a diagonal matrix containing the nodal values of

κ (x, y) i.e.,

K =








κ (x1, y1) 0 · · · 0
0 κ (x2, y2) · · · 0
...

...
. . .

...

0 0 · · · κ (xM , yM)








(8.60)

where M is the number of collocation points used in applying the DR-BEM.

Using this matrix expression for b Equation (8.59) can be rearranged to give

(H + SK)u = Gq whereS =
(

HÛ −GQ̂
)

F−1 (8.61)

which is a boundary-only expression for the variable coefficient Helmholtz equation. This method

is general and can easily be extended to accommodate variable coefficient derivative terms and a

sum of variable coefficient terms.

Formulating the DR-BEM for a General Elliptic Problem In this section it has been shown

how the DR-BEM can be applied for elliptic problems with varying forms of b. The DR-BEM can

be applied in cases where b involves a sum of terms due to the basic property

∫

Ω

(b1 + b2) dΩ =

∫

Ω

b1 dΩ+

∫

Ω

b2 dΩ (8.62)

Consider a two-dimensional equation of the form

∇2u (x, y) = k (x, y)u+ l (x, y)
∂u

∂x
+m (x, y)

∂u

∂y
+ n (x, y) (8.63)

Applying the DR-BEM to this equation gives a matrix system of the form

(H −R)u = Gq + Sn (8.64)

where

S =
(

HÛ −GQ̂
)

F−1 (8.65)

R = S

[

K +

(

L
∂F

∂X
+M

∂F

∂Y

)

F−1

]

(8.66)
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K, L and M are diagonal matrices where the diagonals contain the nodal values of k, l and m
respectively. n is a vector containing the nodal values of n.

The DR-BEM Using Other Operators

The DR-BEM has been presented in this chapter based on the Laplace operator. However the DR-

BEM can be be applied using essentially any operator of appropriate order with known fundamental

solution. If an appropriate operator can be found the complexity of the forcing function b can be

reduced. This should improve the accuracy of the method. The problem with applying the DR-

BEM based on another operator is in choosing the approximating function f . A choice of f which

produces accurate results is required but it is also necessary to choose an f for which a particular

solution û can be determined.

Zhu (1993) has determined the particular solutions necessary for applying the DR-BEM based

on the two-dimensional Helmholtz operator.

∇2u+ κ2u = b (x, y, u, t) (8.67)

Radial functions have generally been used when applying the DR-BEM. Along the lines of Wrobel

et al. (1986), Zhu chose an approximating function of the form f = rm where m is a positive

integer. Determining the particular solution û requires solving the ordinary differential equation

d2û

dr2
+

1

r

dû

dr
+ κ2u = rm (8.68)

which can be achieved using a variation of coefficients method.

Partridge et al. (1992) applied the DR-BEM to the transient convection diffusion equation

D∇2u− vx
∂u

∂x
− vy

∂u

∂y
− ku =

∂u

∂t
(8.69)

where the material parameters D, vx, vy and k are all assumed to be homogeneous. They applied

the DR-BEM based on the steady-state convection-diffusion operator

D∇2u− vx
∂u

∂x
− vy

∂u

∂y
− ku = 0 (8.70)

which has a known fundamental solution.

This analysis requires the determination of a particular solution û which satisfies

D∇2û− vx
∂û

∂x
− vy

∂û

∂y
− kû = f (8.71)

Instead of defining a form of the approximating function f and solving for û Partridge et al. chose

to define û and use Equation (8.71) to determine the corresponding approximating function. Al-

though somewhat ad-hoc this approach was found to produce accurate results.
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