
Native distributed and MPI parallelism
in the high-level language Julia for

quantum Monte Carlo

Mingrui Yang1,2,3, Dr Elke Pahl3,4,5 and Prof. Joachim Brand1,2

1 New Zealand Institute for Advanced Study and Centre for Theoretical Chemistry and Physics,
Massey University, Auckland, New Zealand
2 Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand
3 MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
4 Department of Physics, University of Auckland, Auckland, New Zealand
5 School of Natural and Computational Sciences and Centre for Theoretical Chemistry and Physics,
Massey University, Auckland, New Zealand

Outline

1. Julia on HPC

2. Paradigms of parallelism

3. Monte Carlo algorithm

4. Profiling the parallel Julia code on NeSI
(NeSI consultancy project)

2

: the high level programming language

Key features:

▷ It’s new: released in 2012; v1.0 in 2018
▷ High level language: fewer lines of code
▷ High performance: just-in-time (JIT) compiler
▷ 4225 (today) packages available in Julia =>
▷ Rapidly growing community
▷ Open source (it is free!)
▷ Designed for parallel computing

3

Parallel computing with

Options:
▷ Distributed Computing (built-in with Distributed.jl, Julia standard library)

(distributed memory, works across nodes)

▷ Multi-Threading (built-in with @threads macro, available in Julia v1.3 or higher)

(shared memory, works only within a single node)

▷ Message Passing Interface (with MPI.jl wrapper of external C MPI library)

(distributed memory, works across nodes with fast hardware communication)

4

Paradigms: Distributed vs MPI (for n processors)

code

controlling
process (0)

worker 1

worker 2

worker 3

worker n

...

code

rank 0

rank 1

rank 2

rank n-1

...

communications

Distributed.jl (built-in Julia package): MPI.jl (with external MPI library):

5

Running Julia on HPC
▷ Julia is available as a module on NeSI’s Mahuika & Maui, alternatively you

can use the binary version

▷ For Distributed, use --ntasks=1 and --cpus-per-task=n for slurm,
and use julia -p n <your_julia_code>.jl to run your code

▷ For MPI, use --ntasks=n and --cpus-per-task=1 in slurm, and use
srun julia <your_julia_code>.jl to run your code

A MPI module may also need to be loaded depends on the Julia build

6

Monte Carlo methods
Estimating the value of 𝜋 with random numbers:

Monte Carlo sampling becomes very efficient
for high-dimensional problems

Ultracold atom physics: experimentalists
“put” particles into washboard-like potential:

an atom

potential energy

The wave function:

a configurationa coefficient
7

Monte Carlo methods
Full Configuration Interaction quantum
Monte Carlo (FCIQMC) walker dynamics:

|Di〉 : configuration

ci : coefficient

: (+ve) walker

: (-ve) walker

The wave function:

a bit “address”
01011011100…

an integer

Solve it as a (sparse) matrix eigenvalue problem

Matrix dimension can get very large >> 10100 !!!

Typically 106 to 109 walkers are used

Need parallelism and HPC!

8

Schrödinger
equation

Profiling
To identify "bottlenecks" as

targets for code optimisation

http://docs.junolab.org/stable/man/juno_frontend/#Profiler-1
9

http://docs.junolab.org/stable/man/juno_frontend/#Profiler-1

http://docs.junolab.org/stable/man/juno_frontend/#Profiler-1

http://docs.junolab.org/stable/man/juno_frontend/#Profiler-1

Profiling parallel Julia code
(NeSI consultancy project)

Challenges:

▷ Julia is new - limited guidance
▷ Some commercial tools do not

support Julia yet
▷ Combined with parallelisation makes

it harder for Julia native profiler
▷ Collect and visualise data on HPC

(NeSI)

Outcomes:
▷ Slurm profiling - limited insight
▷ Intel® VTune™ Profiler works well for

Julia with parallelism
▷ VTune’s GUI is informative and fairly

easy to navigate
▷ Need a special build for Julia to use

VTune (won’t work with binary
version) - available now (v1.2; v1.4)

With Chris Scott, Alexander Pletzer and Wolfgang Hayek

11

1
3

 p
ro

ce
ss

es

1
2

 r
an

ks

↖ the controlling process

Distributed.jl :

MPI.jl :

VTune - CPU Utilisation

12

12 CPUs
Hyperthreading off

What’s
learned

Distributed:

▷ Small scale computation (small number of walkers)
▷ Single node (slower across nodes)
▷ Good for serial file IO
▷ Pure Julia code and no hardware dependency

MPI:

▷ Large scale (large number of walker with balanced load)
▷ Multiple nodes (fast InfiniBand interconnection)
▷ File IO in parallel (HDF5)
▷ Coding: more low-level thinking required

Profiling + NeSI consultancy:

▷ Optimised code (20x faster)
▷ https://github.com/joachimbrand/Rimu.jl
▷ https://www.nesi.org.nz/services/consultancy

13

https://github.com/joachimbrand/Rimu.jl
https://www.nesi.org.nz/services/consultancy

Summary
▷ Julia is modern and powerful
▷ Multiple parallelisms available
▷ Many new things to explore
▷ NeSI consultancy is very helpful

Acknowledgement

Thank you!

14

Chris Scott, Alexander Pletzer
and Wolfgang Hayek

Brand group and CTCP
members at Massey

