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: the high level programming language  

Key features:

▷ It’s new: released in 2012; v1.0 in 2018
▷ High level language: fewer lines of code
▷ High performance: just-in-time (JIT) compiler
▷ 4225 (today) packages available in Julia =>
▷ Rapidly growing community
▷ Open source (it is free!)
▷ Designed for parallel computing
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Parallel computing with 

Options:
▷ Distributed Computing (built-in with Distributed.jl, Julia standard library)

(distributed memory, works across nodes)

▷ Multi-Threading (built-in with @threads macro, available in Julia v1.3 or higher)

(shared memory, works only within a single node)

▷ Message Passing Interface (with MPI.jl wrapper of external C MPI library)

(distributed memory, works across nodes with fast hardware communication)
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Paradigms: Distributed vs MPI (for n processors)

code

controlling 
process (0)

worker 1

worker 2

worker 3

worker n

...

code

rank 0

rank 1

rank 2

rank n-1

...

communications

Distributed.jl (built-in Julia package): MPI.jl (with external MPI library):
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Running Julia on HPC
▷ Julia is available as a module on NeSI’s Mahuika & Maui, alternatively you 

can use the binary version

▷ For Distributed, use --ntasks=1 and --cpus-per-task=n for slurm, 
and use julia -p n <your_julia_code>.jl to run your code

▷ For MPI, use --ntasks=n and --cpus-per-task=1  in slurm, and use  
srun julia <your_julia_code>.jl to run your code

A MPI module may also need to be loaded depends on the Julia build
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Monte Carlo methods
Estimating the value of 𝜋 with random numbers:

Monte Carlo sampling becomes very efficient 
for high-dimensional problems

Ultracold atom physics: experimentalists 
“put” particles into washboard-like potential:

an atom

potential energy

The wave function:

a configurationa coefficient
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Monte Carlo methods
Full Configuration Interaction quantum 
Monte Carlo (FCIQMC) walker dynamics:

|Di〉 : configuration

ci : coefficient

: (+ve) walker

: (-ve) walker

The wave function:

a bit “address”
01011011100…

an integer

Solve it as a (sparse) matrix eigenvalue problem

Matrix dimension can get very large >> 10100 !!!

Typically 106 to 109 walkers are used 

Need parallelism and HPC!

8

Schrödinger 
equation



Profiling
To identify "bottlenecks" as 

targets for code optimisation

http://docs.junolab.org/stable/man/juno_frontend/#Profiler-1
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Profiling parallel Julia code 
(NeSI consultancy project)

Challenges:

▷ Julia is new - limited guidance
▷ Some commercial tools do not 

support Julia yet 
▷ Combined with parallelisation makes 

it harder for Julia native profiler
▷ Collect and visualise data on HPC 

(NeSI)

Outcomes:
▷ Slurm profiling - limited insight
▷ Intel® VTune™ Profiler works well for 

Julia with parallelism
▷ VTune’s GUI is informative and fairly 

easy to navigate
▷ Need a special build for Julia to use 

VTune (won’t work with binary 
version) - available now (v1.2; v1.4)

With Chris Scott, Alexander Pletzer and Wolfgang Hayek
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↖ the controlling process

Distributed.jl :

MPI.jl :

VTune - CPU Utilisation
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What’s 
learned

Distributed: 

▷ Small scale computation (small number of walkers)
▷ Single node (slower across nodes) 
▷ Good for serial file IO 
▷ Pure Julia code and no hardware dependency

MPI: 

▷ Large scale (large number of walker with balanced load)
▷ Multiple nodes (fast InfiniBand interconnection)
▷ File IO in parallel (HDF5)
▷ Coding: more low-level thinking required

Profiling + NeSI consultancy:

▷ Optimised code (20x faster) 
▷ https://github.com/joachimbrand/Rimu.jl
▷ https://www.nesi.org.nz/services/consultancy
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Summary
▷ Julia is modern and powerful
▷ Multiple parallelisms available
▷ Many new things to explore
▷ NeSI consultancy is very helpful
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