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Abstract 

The objective of this study is estimating carbon emissions in the building and transportation 
sectors in the Sumida ward, Tokyo. We combine top-down and bottom-up approaches, 
which use spatial big data, for the estimating. The estimated emissions from individual 
buildings and road links are visualized by a three-dimensional (3D) mapping. The results 
suggest the usefulness of our approach for visualizing urban carbon emissions for 
supporting community-level carbon monitoring and management. 
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1. Introduction 

Low carbon urban/regional management has attracted considerable attention from urban 
stakeholders, especially after the Paris Agreement adopted in December 2015. Already, 228 cities 
have pledged to reduce carbon dioxide emissions (carbon emissions, hereafter) by a combined total 
of 454 Giga-ton/year by 2020 (Gurney et al., 2015). Carbon emissions management is an important 
issue for not only government, which regularizes emissions, but also local municipalities to promote 
low carbonization on their own. Carbon mapping is an effective approach to encourage/support 
carbon management for policy makers. Carbon mapping allows us to compare the relative influences 
from each emission source (e.g., residences, offices, vehicles), make effective policies, quantify the 
impact of these policies, and identify hot spots and unexpected emissions, e.g., due to congestion, in 
a near real-time manner. Further, carbon mapping is useful in avoiding greenwashing. A term used to 
describe deceptive claims about the environmental benefits of a product, service or technology, which 
often inhibit cities from enacting real sustainable measures. 

The recent development of sensor technologies allow for monitoring building conditions, 
human movements, market transactions, and other urban activities; they will offer useful insights for 
urban analysis (Batty, 2013). Despite that, these data are rarely used for carbon monitoring (Yamagata 
et al., 2017; 2018; Sharifi et al., 2018). 

This study attempts to estimate and visualize carbon emissions from individual buildings and 
road links by combining the bottom-up and top-down approaches (Figure 1). We rely on the individual 
building and transportation data for the former whereas carbon intensity monitored at the Tokyo 
Skytree (Terada et al., 2017) is used for the latter. 
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Figure 1: Study area (left) and an image of our carbon estimation approach (right) 

 

2. Approach for carbon mapping 

We have developed CO2 emission estimation models. It consists of the following submodels: 
[Global Model] 
We model the relationship between the concentration 𝑦𝑦𝑡𝑡𝑂𝑂 observed at the Tokyo SkyTree at time t 
and the total carbon emission 𝑦𝑦𝑡𝑡𝑈𝑈 in the Sumida ward, that estimated using unit consumptions, 
which we introduce later, using the following state space model: 

�𝑦𝑦𝑡𝑡
𝑂𝑂  
𝑦𝑦𝑡𝑡𝑈𝑈

� = �k 
1� 𝑥𝑥𝑡𝑡 + �𝑒𝑒𝑡𝑡

𝑂𝑂 
𝑒𝑒𝑡𝑡𝑈𝑈
� , �𝑒𝑒𝑡𝑡

𝑂𝑂 
𝑒𝑒𝑡𝑡𝑈𝑈
�~𝑁𝑁��00� , �

𝜎𝜎𝑂𝑂2 0
0 𝜎𝜎𝑈𝑈2

�� 

Equation 1 

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 , ε𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝑥𝑥2) 
 Equation 2 

where 𝑥𝑥𝑡𝑡  is the true unknown emission from the entire Sumida ward. 𝜎𝜎𝑂𝑂2, 𝜎𝜎𝑈𝑈2, and 𝜎𝜎𝑥𝑥2 are variance 
parameters. This global-level state space model balances the tower-observations and the unit-
consumption-based estimates to recover the true aggregated emission 𝑥𝑥𝑡𝑡.  

The state-space model (equations 1 and 2) is estimated using the Expectation-Maximization (EM) 
algorithm, which repeats the model likelihood maximization to estimate the parameters and the 
updating the CO2 estimates 𝑥𝑥𝑡𝑡  until the convergence. 

 
[Local Model] 
The local model downscales the estimated 𝑥𝑥𝑡𝑡  into individual buildings and road links by 
proportionally distributing the estimated total emissions 𝑥𝑥𝑡𝑡  at time t using the following model:  
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 Equation 3 

where 𝑤𝑤𝑖𝑖 is the weight assigned for i-th building or road link. For buildings the weight is evaluated 
using the unit building per 1m2 of total floor area. For road link, the weight is defined by multiplying 
(the number of cars at the time interval t) with (the unit emission per 1 ton/km). The number of cars 
is estimated using a mobile GPS data (provided by Agoop Co.Ltd.). Specifically, the GPS points are 
classified int pedestrians, car users, and train users. Then, the car users are allocated to their nearest 
road link for the counting. Note that 𝑦𝑦𝑡𝑡𝑈𝑈 is defined by accumulating the unit emissions across the 
Sumida ward. In other words, 𝑥𝑥𝑡𝑡  equals 𝑦𝑦𝑡𝑡𝑈𝑈 after an adjustment so that the value is consistent with 
the tower observations. 

 

3. Result and discussion 

Comparative analysis of tower observations 𝑦𝑦𝑡𝑡𝑂𝑂  and bottom-up estimates 𝑦𝑦𝑡𝑡𝑈𝑈. The results for the 
building sector and transportation sector are summarized in Figure 2. The daily CO2 emissions 
obtained from the state-space model were more intuitive, confirming the usefulness of the 
correction by tower observation. It might be because the tower observation flexibly estimates 
seasonal changes that could not be captured by the bottom-up estimation. From the results of the 
above correlation analysis, we confirmed the importance of utilizing tower observations as well as 
bottom-up observations. 

The CO2 emissions estimated for October 11 and August 15 are plotted in Figure 3. Data 
assimilation with other real-time CO2 emissions can be an effective for estimating CO2 mapping at 
individual scale. 

 

Figure 2. Estimation result of daily change of CO2 emission 
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Figure 3. Urban carbon mapping estimation in Sumida ward, Tokyo. 
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