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Abstract 

Increased availability of spatiotemporal data has allowed movement studies to shift their 

objectives from descriptive models to explanations of the underlying “causes” of 

movement.  This paper presents a model, consisting of three conceptual levels of space-

time representation for framing movement analysis: ‘association’, ‘intervention’ and 

‘counterfactual’.  These are presented within a conceptual cube accommodating both 

absolute and relative measurements in space and/or time, relationships between 

observations and methods of enquiry.  To ground these concepts, an agent-based football 

simulation model is presented as a demonstration of the observation level and the properties 

of the system related to the conceptual cube.  This team sport domain was chosen as it 

represents constrained space and time as well as simplified spatiotemporal object behaviour 

that serves to effectively reflect on aspects of the conceptual model. Future theoretical 

developments in computational movement analysis are proposed in light of the model and 

the associated development of machine learning methods for simulation and analysis 

addressing the intervention and counterfactual levels of the conceptual cube. 
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1. Introduction 

The current proliferation of space-time-theme observations has encouraged and potentially enabled 

science, in a broad sense, to shift its ultimate objectives from descriptive models to explaining the 

underlying causes of phenomena. Computational Movement Analysis (CMA) is a multi-disciplinary 

field, dedicated to concepts and methods working with inherently spatio-temporal observations 

(Gudmundsson et al., 2011). CMA has brought new insight into spatial dynamic processes through 

summarizing, extracting, and visualizing movement behaviours in various applications (Long and 

Nelson, 2013). The achievements would surprise one, if science only aimed to summarize and visualize 

observations in form of associations and patterns. While it is far from satisfaction, if one is concerned 

with scientific understanding and reasoning, as they have ironically been lacking in CMA. Seemingly it 

has not delivered the joy of modelling the reasons behind the movement behaviours because a 

substantial number of its methods are classified as the data-mining algorithms, which ultimately 

pursue descriptive or predictive models (Han et al., 2011). 
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Movement studies have recently also stepped into the realm of Artificial Intelligence (AI) to implement 

‘thinking machines’ for analysing movement behaviours. Similar to many other fields, AI has not 

provided CMA with the power of ‘reasoning-models’ to explain the underlying causes of movement 

decisions, simply because AI itself has not as yet acquired such a capability. Admitting the recently 

successes of AI (e.g., deep neural networks), the favourite tool in the majority of the current 

implementations is the association that serves the idea of ‘jumping to a conclusion’ to recognize 

patterns and produce stochastic models without producing explanations. These belong to a ‘function-

based’ family of AI algorithms that are almost entirely about fitting a function on the data, with no 

requirement or production of reasoning models. In contrast, the ‘model-based’ approach, initially 

funded by the pioneers of AI, involves a representation of knowledge and reasoning (Darwiche, 2018).  

To lay the groundwork for discussion and future implementation, the current work presents a 

conceptual model to draw and map relations among what we see, what we know, and what we aim 

to know from and about movement processes, representing an advance on established efforts in 

movement modelling. This paper is structured as follows: Section 2 summarizes the development of a 

conceptual cube, and the thinking behind it, through a synthesis of observations, inquiries, and formal 

scientific objectives. This is supported by a short examination of the nature of space and time in order 

to extract commonalities (2.1), and a reconsideration of the objectives of movement analysis in the 

light of the conceptual and practical research effort reported in this paper (2.2). Section 3 introduces 

an implementation of the proposed model in an Agent-Based-Modelling (ABM) simulation, in order to 

ground and demonstrate a part the conceptual cube’s aspects. The paper concludes (section 4), by a 

discussion and a few suggestions to model the future generation of AI implementations in movement 

analysis. 

2. Space-Time 

2.1. Definition in literature 

Definitions of space and time originate in the philosophy of physics with the classical relative and 

absolute approaches. In this duality, relative space is described as attributes of entities, or entities are 

seen as attributes of absolute space (Couclelis and Gale, 1986). This debate has been reflected in 

geographic data models through the discrete-object and continuous-field dichotomies (Peuquet, 

1984).  

From a movement studies perspective, the varying definitions of space and time do not have any solid 

consensus. Work towards a common definition necessitates a comprehensive philosophical discussion 

that is beyond the scope of this paper. Despite the disparity, there appears to be a few overlapping 

areas in relevant fields that could assist achieving a consensus to satisfy both theoretical and applied 

movement studies (see Langran, 1992; Mark and Frank, 1991; Nunes, 1991; Peuquet, 2002). These 

commonalities can be succinctly used to, conceptually, distinguish nine (3x3) observation typologies, 

presented as part of Figure 1. This makes the cover layer of a conceptual cube, with first, middle, and 

back layers extending space-time observations into causal factors along association (‘what’), 

intervention (‘how’), and counterfactual (‘why’) lines. This three-layer model of operation, derived 

from Pearl and Mackenzie (2018), is the basis for the key contribution of the presented research, and 

is explained later on in this section (2.2). 



 
Figure 1. The conceptual representation of space-time-theme observations. An example of temporal 

observations in invariant column of space could be economic data (e.g. bankruptcy), while a static 

map (e.g. soil data) is a good instance of spatial data in the invariant-time row. 

In short, at the risk of oversimplification, we prefer to assume that relative observations only include 

measurements that are referenced to Moving Objects’ (MO) attributes. Regarding the absolute view 

in movement data, we assume that space and time measurements are referenced to some constant 

basis or origin. In other words, referencing to any other entities (objects or events) rather than the 

MOs embodies the absolute, or at least absolute representation of, space or time (Rahimi et al., 2018).  

2.2. Observation and analysis in movement studies 

This section explores the Figure 1 conceptual cube, specifically describing the operation axis (levels of 

analysis). As background, we present an adopted framework of the ‘ladder of causation’ concept, 

introduced by Pearl and Mackenzie (2018), which distinguishes three association, intervention, and 

counterfactual stages of understanding. They claim that the new and underpinning science of causality 

is established based on three distinct and correspondent levels of cognitive ability: ‘seeing,’ ‘doing,’ 

and ‘imagining.’ 

The authors describe a seeing actor  an observer  as an entity capable of sensing its surroundings. 

Such an observer is qualified to answer various forms of what inquiries (e.g., what, when, or where 

something happened or may happen), or any dual and triple combination of them (e.g., a question of 

movement for when and where). An observer is also, in most cases, capable of summarising its sensory 



observations into patterns and associations, which together with mere observing satisfy a few 

scientific objectives. The scientific objectives are often presented as a set of goals starting from 

‘exploring,’ ‘describing,’ ‘changing,’ ‘evaluating,’ ‘assessing,’ ‘understanding,’ ‘explaining,’ and ending 

with ‘predicting,’ which are mainly pursued by ‘what,’ ‘how’ and ‘why’ question types (Blaikie, 2003). 

Therefore, the first and second objectives are within the domain of what questions and of passive 

observations, or with some processing, the extracted associations of such observations. In terms of 

movement data, an observer can detect regularities in our environment and provide answers for such 

associational questions as in Table 1. 

Table 1: Some typical observation and what questions that can be answered by a movement observer. 

Relative Time  

Where should we expect to see 

MO 𝑖, when its attribute 𝑎 

changes? 

Which MO will turn right, 

when MO 𝑗 turns right? 

Absolute Time  

If we see MO 𝑖 at time 𝑡, how 

far away are we likely to 

observe geographic object 𝑜? 

When does MO 𝑖 meet 

MO 𝑗? 

Invariant Time 
What can attribute 𝑎 

be if we observe 𝑏? 
  

 Invariant Space Absolute Space Relative Space 

In Pearl and Mackenzie’s framework, the ‘intervening’ ability distinguishes an observer from a ‘doer’ 

 ‘tool user’  which entails choosing among alternatives to make changes at will. Controlled 

interventions  active observations  can be applied at all scales, with experimenters able to make 

changes to some elements of nature to observe, evaluate and assess the effects of such interventions. 

Thus we perceive how the phenomenon occurs, which is a part of a greater effort to initiate the 

researchers’ idea of causal relations. In this perspective, the quest to find laws of nature is more than 

observing the objective facts, and calls for a creative invention and clever testing of hypotheses. 

Regarding movement analysis, an organism possessing intervening ability is capable of providing 

answers for some typical questions, given in Table 2. 

Table 2: Some typical intervention and how questions that a doer organism can potentially answer. 

Relative Time  

If I make MO 𝑖 move, how 

long after will MO 𝑗 start 

acting? 

How can I possibly make 

MO 𝑖 follow MO 𝑗? 

Absolute Time  

What would happen if I put 

geographic object 𝑜 next to 

MO 𝑖 at time 𝑡? 

Where would MO 𝑖 be at 

time 𝑡 if I ask MO 𝑗 to 

leave? 

Invariant Time 

What would attribute 

𝑎 be if I change 

attribute 𝑏? 

  

 Invariant Space Absolute Space Relative Space 

The third level of understanding concerns counterfactual thinking that permits, and calls for, 

imagination. Stepping into the realm of causation means mastering the science to understand how to 



make a natural phenomenon happen and finally to explain why such a phenomenon behaves the way 

it does. The scientific models of causality rely on a set of possible outcomes  counterfactuals  that 

are based upon a set of conditional criteria and an intervention, where at least one of the criteria is 

manipulated (Heckman, 2005). A theoretical explanation of causes and effects and an answer to why 

both come from comparing the counterfactual worlds to the observed one. To take a few out of many 

possible examples, in movement analysis, a counterfactual reasoner should potentially be able to ask 

and answer such questions as demonstrated in Table 3. 

Table 3: Some typical counterfactual and why questions in CMA. 

Relative Time  

Would MO 𝑗 have been in 

location 𝑙 if MO 𝑖 had not 

moved? 

Why does MO 𝑖 follow 

MO 𝑗? 

Absolute Time  
Is geographic object 𝑜 the 

cause of MO 𝑖 running? 

What if MO 𝑖 had not 

met MO 𝑗 at time 𝑡? 

Invariant Time 

What would have been 

attribute 𝑎 if I had changed 

attribute 𝑏? 

  

 Invariant Space Absolute Space Relative Space 

The given set of examples at each operation level includes what if queries, and claims to scientifically 

offer answers to such questions at all stages of understanding, albeit with different levels of flexibility. 

This frames the basic distinction between forecasting and predicting in practical studies. Forecasting, 

in general, relies on passive observations and fixed conditions, not necessary based on a deep 

understanding of a phenomenon’s behaviour. Whereas predicting a mechanism’s reaction to a specific 

change, synthesised or natural, requires an in-depth understanding of its characteristics (Turchin, 

1998).  

3. Demonstrating the space-time observation through a simulation 

To ground the conceptual model, an agent-based football (or soccer) simulation is presented as a 

demonstration of the observation-associated space-time properties. In Agent-Based-Modelling 

(ABM), individual MOs are synthesized to reproduce their interrelationships and regenerate their 

interactions with the environment within which they move (Bousquet and Le Page, 2004). Agents are 

the abstract representations of real-world entities (objects and events) that potentially possess 

characteristics, knowledge, and desires, influencing their decisions in achieving a set of objectives 

(Moore, 2011). A team sport domain is chosen as it features constrained space and time that serves 

to effectively reflect on aspects of the conceptual model. We have chosen NetLogo to implement the 

model as it simply manifests both MOs and environmental objects in the form of ‘Turtle’ and ‘Patch’ 

agents. Turtles are (point) objects, capable of moving over a grid (space) of patches, which are also 

programmable agents. All agents interact with each other and perform various tasks concurrently 

(Tisue and Wilensky, 2004). In our case, turtles represent player agents and the ball, where a group of 

patches collectively create the football pitch and its elements (e.g., goals and boundaries). 

A football match can be simplified through a set of spatiotemporal rules based upon some specific 

assumptions. These rules, presented in an agent decision tree, are shown in Figure 2.  



 
Figure 2: The set of rules in the simulated football decision making process. 

In Figure 2, each agent’s decision-making process consists of four scenarios, based on the question 

Who possesses the ball? 1) if the answer is one of the Opponents, the agent considers Can I get the 

ball? If No, agents Watch the opponent, otherwise they Try to get the ball. Yes or no answers depends 

on the current agent’s abilities, the ball’s position, and other players’ locations. 2) The second 

scenario, No one possesses the ball, employs the same rules as in the first one. 3) The third scenario 

is My teammate possesses the ball leads to the action Find a good position. 4) The last scenario, where 

the current agent  Me  possesses the ball, is more complex leading to possible Carry, Pass, or Shoot 

actions with the ball. In this scenario, the agent considers its abilities, the location of the opponent’s 

goal, and other players’ positions. All scenarios lead to the same final stage to decide the next location 

to Move to? This is where agents consider a set of factors contained in their abilities, their distance to 

the opponent’s goal, and other moving agents’ positions (players and the ball). They also take their 

own positions on the pitch into account to act within assumed spatial constraints.  

In this model, players are influenced by three (Zero-, First-, and Second-order) sets of factors that, 

respectively, indicate the effects of the MOs’ own theme attributes, space-time context, and 

interactions between MOs based on their movement behaviours. The first set contains the agents' 

identities, abilities, goals, and duties (e.g., id, energy, stamina, pace, shooting, agility, teamwork). 

These attributes are either static or dynamic. Energy level for example is systematically reduced over 

time as a function of the amount of steps and stamina. However, pace, shooting, and agility are 

assumed to be static, unless fluctuated during the game due to energy level and the agent’s current 

speed. Pace, shooting, agility, and teamwork, while causing different behaviours, together influence 

decisions to carry, pass and shoot the ball.  



The second set of factors is classified as environmental constraints, including the pitch elements and 

zones implied by players’ roles. A role is associated with boundaries that an agent should mostly stay 

and move within (e.g., goalkeeper is constrained to the penalty box zone), which collectively create a 

spatial arrangement or formation of players (Bialkowski et al., 2014). In the specific scenario below, 

we gave team ‘A’ the common formation 3-5-2 and 4-3-3 for team ‘B’ as shown in Figure 3. In this 

figure, red, yellow and black boxes show Goalie (G), right Central Back (rCB), and left Forward (lF) role 

areas for player 1, 4, and 9, respectively. The purple, grey, and blue boxes represent left Back (lB), 

right Mid-Fielder (rMF), and Central Forward (CF) role domains, respectively, for player 14, 18, and 20. 

 
Figure 3: Six examples of the assumed spatial restrictions for agents. The measurements are relative 

to a Cartesian coordinate system with the origin point at the middle of the pitch. The horizontal axis 

(x) is between -110 to 110, while the vertical axis (y) is within a range of -60 to 60.  

The last causal set of factors involves interactions with other agents (players and the ball). Interaction 

with other players is either following or running away from them. Trying to get, passing, shooting, and 

carrying the ball are considered generic interactions between players with the ball agent.  

3.1. Simulation model Verification and Validation (V&V) 

As a part of ‘implementation verification’ (Sargent, 2010), four simple statistical and visual tests are 

conducted here to evaluate that agents follow the given decision-making process in Figure 2. These 

examinations, designed to verify agents’ behaviours, are; 1) initially based on random walk, 2) limited 

with agents’ movement abilities (both in line with 0-order behaviour), 3) restricted within the spatial 

constraints (1-order behaviour), and 4) plausible, given the results of interactions with their 

neighbouring agents (2-order behaviour).  

Note that in all series of tests the model is only run for one half of a game (45 simulated minutes). 

Considering the observation interval, 10 frames per second, the model produces a sufficiently large 

data set for verifying its functionality. Specific to the first two tests, only two agents were used to 



facilitate the presentation of results. However, four agents (all players) were necessary for the third 

test and five agents (four players, one ball) used for the last test. 

We start with testing normality of each player’s speed and direction during the game to verify their 

random-walk. There is no restriction at this level except players should choose their speed (up to 2 

pixels1) and turning2 (up to 360 degrees) values at each time interval (100 milliseconds). Figure 4 

demonstrates these values are normally distributed for both players. The trajectories, plotted in the 

middle, are entirely random with no external stimulus (role-based zones, other players). 

 
Figure 4: The results of testing normality and randomness of the model. 

The second test analyses that agents’ movement have been limited within the speed and turning 

thresholds, based on their given abilities (e.g., energy, stamina, pace, and agility). Figure 5 represents 

the emerged trajectories in that Player 1 (in blue) has moved across almost all the pitch, while Player 

18 (in red) has acted more in a circular pattern. This is because of the greater agility of Player 18 that 

provides it with a broader range of turning angles. In this figure, the graph shows the energy 

consumption trend for both agents during the game. It seems Player 1, due to less running distance 

covered, has lost almost 20 per cent less energy than the other player. Also, in fact, Player 18 has a 

small value of stamina that is the case for consuming more energy. 

 
Figure 5: The results of testing agent’s endogenous abilities on their movement behaviours. 

Figure 6 displays the results of the third test and the effect of role-based boundaries. All four agents 

are aware of the spatial constraints and only move within their assumed role areas. The descriptive 

parameters conform to the plotted trajectories. In this test, Player 7 and 18 were chosen as forward 

players, while Players 1 and 12 were goalkeepers, remaining in the penalty boxes. 

                                                 
1 Each pixel is equivalent to 0.5 metres 
2 Change of direction 



 
Figure 6: The generated trajectories by player 1 and 7 (light and dark blue) as well as player 12 and 18 

(yellow and red). 

The last set of tests goes deeper into the model to verify that agents’ interactions comply with the 

given simulation model specification. Here the aim is to see if players still exhibit their abilities and 

constraints while interacting with spatial objects (e.g., other players, the ball, and the goals). In doing 

so, at each time-interval or tick, players should make a decision to pick an action from seven options, 

and decide their velocity in accomplishing the action. Actions include the six discussed operations in 

Figure 2 in addition to a random-walk action, which guarantees a degree of freedom for agents. Similar 

to the previous test, Player 1 and 7 are the goalkeeper and a forward player in team A, while players 

12 and 18 have the same roles in team B. In this test, goalkeepers are restricted within their half of 

the pitch, whereas forwards can move across the whole pitch except their own penalty boxes. Figure 

7 illustrates the results of the last test. 

 
Figure 7: The emergent results of testing agents’ interactions. 

The bar chart shows how many times each player has picked different actions. It appears that Player 

18 has decided to carry the ball more than the others due to having the highest value of speed and 

agility, which according to the provided instruction were two key parameters for such an action. Player 

1 in contrast has tried to get the ball in 45% of its decisions, roughly equivalent to the time that the 

opposing Player 18 was carrying the ball. Player 12, in interaction with its teammate 18, has looked 

for free space to open up the game for almost the same amount of time. According to the assumed 

instruction, teamwork ability is the main parameter for the passing operation, which justifies more 

passes for players 1 and 12. Players are also supposed to be able to shoot the ball only when they are 

located in the vicinity of the opponent’s goal. The zero number of shoots by goalies, despite their 

higher shooting abilities, verifies that the rule is being followed and an awareness of surroundings. 

The emergent space-time behaviours are also summarized in the plotted trajectories in Figure 7. 



4. Discussion and Conclusion 

In an attempt to develop a model that supports both theory and application, we assumed three (space, 

time, and theme) attributes to be measured within two conceptually different (absolute and relative) 

reference systems that are being processed through three (association, intervention and 

counterfactual) operation levels. This assumption supports unifying 27 possible operations in a 

conceptual cube (Figure 1) as an arena where each space-time-theme inquiry and its relevant 

objective takes place. 

We simulate the above assumption in order to convey this distinction at the observational level. Figure 

2 illustrates the movement decision-making process of a football match in the ABM environment. This 

model implements 23 agents (including 22 players and a ball) that make choices among 7 operations 

and decide their speed and direction considering three sets of conditional criteria: 1) their abilities, 2) 

their responses to the contextual entities, and 3) their interactions with other MOs. The observed 

behaviours confirm that the agents are aware of all three sets of factors. Tracing the emerged 

trajectories in Figures 4 to 7 also verifies, the more agents become aware of their surroundings, the 

less they move randomly and behave more interactively. 

Further progress in the emergent generation of AI-based applications in CMA needs the development 

of a widely-accepted framework to embed the ideas and resulting observed behaviours.  In trying to 

extend the boundaries of a conceptual model, we need to consider three sets of descriptive, 

explanatory, and predictive goals that are sought with what, how, why, and what if questions. 

Revisiting the function- and model-based approaches in the AI world, models go beyond mere 

observations and association to include descriptions of hypothetical worlds, generated through 

theoretical means. Moreover, models facilitate a more in-depth understanding of complex 

phenomena and are generally more flexibility in dealing with unforeseen circumstances. Thus, 

scientific explanations and predictions need explicit modelling of causation, which itself requires 

manipulation of data and imagination of possible outcomes. These map to the notions of intervention 

and counterfactual operations that together with association are featured in our model as a strategy 

for extending what AI-based movement analysis can do. A small subset out of many potential 

questions was expressed here, that ought to be addressed by an entity that is equipped with a 

reasoning ability (Tables 1 to 3). These instances ambitiously guide an artificial agent in the transition 

from the associational to deeper layers in the conceptual cube. This would mean, at the intervention 

level, inferring the rule structure in Figure 2 (rather than it being created and coded prior to 

simulation), for the football scenario. This may also enable manipulation of conditional movement 

criteria and comparing generated counterfactual worlds to the observed one.  
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