Using Artificial Intelligence to forecast the location of earthquake- and post-earthquake-induced landslides

те рū ао

r.huso@gns.cri.nz

Contents

- Development of an Earthquake-Induced Landslide (EIL) forecast tool for NZ
- Model Structure and Training

AI versus Log Regression

- AI model trained on Inangahua and Murchison EQ landslide datasets, then used to forecast Kaikoura EQ landslides
- Log Regression model trained on Kaikoura EQ and landslides only
- AI model statistically preforms well in forecasting Kaikoura EQ landslides

– Landslides

- Variables investigated (12)
 - Variables with statistical significance:
 - Slope angle
 - Distance to surface fault rupture

500 Meters

250

- Elevation
- Geology
- PGA or PGV
- LSR: Local Slope Relief

Data Difficulties

- Data discontinuities and one-hot encoding
 - Natural ordinal relationship between the categories?
 - 'cold', warm', and 'hot'
 - Not suitable for one-hot encoding
 - Quaternary gravel, debris, sand
 - Neogene siltstone, sandstone
 - Cretaceous conglomerate, igneous rocks, limestone, mudstone, siltstone
 - Early Cretaceous igneous rocks
 - Paleogene igneous rocks, limestone, limestone

Data Difficulties (2)

- Data scales
 - Distance (~100,000 m)
 - Elevation (~2000 m)
 - LSR (~200)
 - PGA (~100)
 - Slope (~90)
 - GeolCode (1, 2, 3, 4, 5)

Data discontinuities

Structure Difficulties

- Model structure
 - Number of hidden layers
 - Number of nodes per layer
 - Amount of "Dropout"

Structure Difficulties

Model Training and Testing

- Train the model
- Apply to Out Of Sample data (if any)
- Rank the input features
- Show charts

Model Training and Testing

Model Charts – Confusion Matrix

Model Charts – Receiver Operating Characteristic

- Log Regression Kaikoura trained
 - Al Murchison and Inangahua trained

Model Charts – Receiver Operating Characteristic

Summary

- Rapid forecasts of landslide probability and impacts in near-real time (5-7 minutes) after an event would help to focus such response efforts
- Several discrete steps are required to produce a useful model that can be applied when an earthquake event happens

Questions

r.huso@gns.cri.nz